Termination in higher-order processes
L3 internship under the supervision of Daniel Hirschkoff

Simon Castellan

December, 1st 2011
a study of termination in higher order π-calculus (π-calculus where messages can be (parametrized) processes)

talk overview
 - presentation of $\text{HO}\pi_\omega$: termination and non-termination in this calculus
 - description of $\lambda\pi$: $\text{HO}\pi_\omega$ with the (simply typed) λ-calculs
 - $\text{Soft-}\lambda\pi$: a subcalculus on which types give information about the length of reductions
Contents

\(\text{HO} \pi_\omega \): Higher order \(\pi \)-calculus

\(\lambda\pi \): higher order \(\pi \)-calculs with full \(\lambda \)-calculus

Soft-\(\lambda\pi \): toward a bound on the length of reductions
\(\text{HO} \pi \omega \)

- \(\pi \)-calculus where processes may exchange (parametrised processes)
- the grammar for this language is

\[
\begin{align*}
\text{(names)} & \quad a, b \\
\text{(processes)} & \quad P, Q ::= 0 \quad \text{null} \\
& \quad | (P || Q) \quad \text{parallel} \\
& \quad | a(x). P \quad \text{reception} \\
& \quad | \bar{a}\langle V \rangle \quad \text{message} \\
& \quad | (\nu a)P \quad \text{name restriction} \\
& \quad | V \ W \quad \text{functional application} \\
\text{(values)} & \quad V, W ::= x \quad \text{variables } \neq \text{ names} \\
& \quad | \lambda x. P \quad \text{function} \\
& \quad | \star \quad \text{base value}
\end{align*}
\]

- communication rule : \(a(x). P || \bar{a}\langle V \rangle \rightarrow P[V/x] \)
Non termination in $\textit{HO}_\pi\omega$

- reduction in $\textit{HO}_\pi\omega$:
 - $a(x). \ P \parallel \bar{a}\langle V \rangle \rightarrow P[V/x]$
 - $(\lambda x. P)V \rightarrow P[V/x]$
- “concurrent auto-application”:
 - $\delta \equiv a(f). (f \star \parallel \bar{a}\langle f \rangle)$
 - $\Omega \equiv \delta \parallel \bar{a}\langle \lambda x. \delta \rangle \rightarrow \Omega$
Non termination in $\mathcal{HO}\pi\omega$

- reduction in $\mathcal{HO}\pi\omega$:
 - $a(x).\ P \parallel \bar{a}\langle V \rangle \rightarrow P[V/x]$
 - $(\lambda x. P)V \rightarrow P[V/x]$
- “concurrent auto-application”:
 - $\delta \equiv a(f).\ (f \star \parallel \bar{a}\langle f \rangle)$
 - $\Omega \equiv \delta \parallel \bar{a}\langle \lambda x.\delta \rangle \rightarrow \Omega$
- the similar process: $\delta' \equiv a(f).\ (f \star \parallel b(x).\ (\bar{c}\langle x \rangle \parallel \bar{a}\langle f \rangle))$
 waits for a message on b at each iteration: “spawning” (in [LMS10], Dal Lago, Martini and Sangiorgi)
Typing in HO^{π_ω} for termination

- two strategies developed in [LMS10] and [DHS10] to make a type system that guarantees termination
- in this talk, I use a strategy based on [DS06].

the idea is to stratify channels: to each channel, we associate an integer representing the level of the channel

\[
\Gamma \vdash t : k \quad \Gamma \vdash t' : k' \quad \Gamma \vdash t : \tau \quad \Gamma(a) = \#^k\tau \\
\Gamma \vdash t \parallel t' : \max(k, k') \quad \Gamma \vdash a(t) : k
\]
Typing in HO^{π_ω} for termination

- two strategies developed in [LMS10] and [DHS10] to make a type system that guarantees termination
- in this talk, I use a strategy based on [DS06].
 the idea is to stratify channels: to each channel, we associate an integer representing the level of the channel

\[
\begin{align*}
\Gamma \vdash t : k & \quad \Gamma \vdash t' : k' \\
\Gamma \vdash t \parallel t' : \max(k, k') & \\
\Gamma \vdash t : \tau & \quad \Gamma(a) = \#^k \tau \\
\Gamma \vdash a(t) : k
\end{align*}
\]

- controlling inputs:

\[
\begin{align*}
\Gamma, x : \tau \vdash P : n < k & \quad \Gamma(a) = \#^k(\tau) \\
\Gamma \vdash a(x).P : 0
\end{align*}
\]
Typing example

\[
\begin{align*}
\Gamma \vdash t : k & \quad \Gamma \vdash t' : k' \\
\Gamma \vdash t \parallel t' : \text{max}(k, k') & \\
\Gamma \vdash t : \tau & \quad \Gamma(a) = \#^k \tau \\
\Gamma \vdash \bar{a} \langle t \rangle : k
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : \tau & \vdash P : n < k & \Gamma(a) = \#^k (\tau) \\
\Gamma & \vdash a(x). P : 0
\end{align*}
\]

- \(a(x). \bar{a} \langle x \rangle\) is rejected
- \(a(x). (\bar{b} \langle x \rangle \parallel \bar{c} \langle x \rangle)\) is accepted iff \(b\) and \(c\) are \(< a\).
- \(a(x). b(x). \bar{a} \langle x \rangle\) may be accepted (the output on \(a\) is hidden by the reception on \(a\)).
Typing example

\[
\begin{align*}
\Gamma \vdash t : k \quad \Gamma \vdash t' : k' & \quad \Gamma \vdash t : \tau \quad \Gamma(a) = \#^k \tau \\
\Gamma \vdash t \parallel t' : \max(k, k') & \quad \Gamma \vdash a\langle t \rangle : k \\
\Gamma, x : \tau \vdash P : n < k \quad \Gamma(a) = \#^k(\tau) & \quad \Gamma \vdash a(x).P : 0
\end{align*}
\]

- \(a(x). \overline{a}\langle x \rangle\) is rejected
- \(a(x). (\overline{b}\langle x \rangle \parallel \overline{c}\langle x \rangle)\) is accepted iff \(b\) and \(c\) are < \(a\).
- \(a(x). b(x). \overline{a}\langle x \rangle\) may be accepted (the output on \(a\) is hidden by the reception on \(a\)).
- functions :
 - if \(x : \tau \vdash P : n\), then \(\vdash \lambda x. P : \tau \rightarrow^{n+1}\)
 - application: the term \(V W\) has level \(n\) iff \(V\) has type \(\tau \rightarrow^n\)
Termination proof

Theorem
Every well-typed term of HO^{π_ω} is strongly normalizing.

Proof.

- attach to P, $m(P)$ the multiset of outputs $(\bar{a}^k\langle V\rangle)$ at top-level in P and levels of applications $((\lambda^n x.P) V)$
- $m(\bar{b}\langle x\rangle || \bar{c}\langle x\rangle || a(x). \bar{d}\langle x\rangle) = \{\text{lvl}(b), \text{lvl}(c)\}$
- show that $P \rightarrow P'$ implies $m(P) > m(P')$ for multiset ordering.
 - $P \equiv a(x). P_0 || \bar{a}\langle V\rangle \rightarrow P' \equiv P_0[V/x]$
 - $P \equiv (\lambda x. P_0) V \rightarrow P' \equiv P_0[V/x]$
Contents

$\text{HO}\pi_\omega$: Higher order π-calculus

$\lambda\pi$: higher order π-calculs with full λ-calculus

Soft-$\lambda\pi$: toward a bound on the length of reductions
\(\lambda\pi\): syntax and semantics

- \(\lambda\pi\) is an extension in HO\(\pi_\omega\) where all functions are available.
- grammar where processes and functions coexist:

\[
\begin{align*}
t, u & ::= 0 & \text{null} & (t \parallel u) & \text{parallel} \\
& | a(x). t & \text{reception} & \bar{a}\langle t \rangle & \text{message} \\
& | (\nu a)t & \text{name restriction} & x & \text{variable} \\
& | \lambda x. t & \text{abstraction} & t u & \text{application}
\end{align*}
\]

- channels are not first-class values (but \(\pi\) can be encoded)
$\lambda\pi$: syntax and semantics

- $\lambda\pi$ is an extension in HOπ_ω where all functions are available.
- grammar where processes and functions coexist :

\[
t, u ::= 0 \quad \text{null} \quad | \quad (t || u) \quad \text{parallel} \\
| \quad a(x). t \quad \text{reception} \quad | \quad \overline{a}(t) \quad \text{message} \\
| \quad (\nu a)t \quad \text{name restriction} \quad | \quad x \quad \text{variable} \\
| \quad \lambda x. t \quad \text{abstraction} \quad | \quad t u \quad \text{application}
\]

- channels are not first-class values (but π can be encoded)
- reduction : same two primitive rules as in HOπ_ω.
- strategy : weak reduction for the λ-calculus (although we could reduce under abstraction and inputs), in particular reduction inside messages
A few examples

- contains spawning and classic idioms of $\text{HO}\pi_\omega$.
- *messages as localities:*
 - $P \to P'$ implies $\bar{a}\langle P \rangle \to \bar{a}\langle P' \rangle$
 - $\bar{a}\langle P \rangle$ (P not a normal form) can be read “P running at a”
 - *passivation:* $a(X).\bar{b}\langle X \rangle$ takes whatever process running at a and transfers it to b
A few examples

- contains spawning and classic idioms of HOπ_ω.
- messages as localities:
 - $P \rightarrow P'$ implies $\bar{a}\langle P \rangle \rightarrow \bar{a}\langle P' \rangle$
 - $\bar{a}\langle P \rangle$ (P not a normal form) can be read “P running at a”
 - passivation: $a(X).\bar{b}\langle X \rangle$ takes whatever process running at a and transfers it to b
- channels as first-class values:
 - given a, the couple $(\lambda x. \bar{a}\langle x \rangle), (\lambda f.a(x). f x)$ represents channel a
Typing in $\lambda\pi$

- type grammar:

$$\sigma, \tau ::= \star$$

- base type

$$\sigma \rightarrow \tau$$

- function type

$$k \quad (\in \mathbb{N}) \text{ type of processes at level } k$$

$$\alpha ::= \#^k(\tau) \quad \text{channel types carrying values of type } \tau$$

- for the λ part: simple types
- for the concurrent part: tracking receptions’ body for incorrect outputs (as before)
- type of a process $=$ maximum of the levels of the channels carrying top-level messages
- in particular, spawning is typable
Typing rules

\[
\begin{align*}
\Gamma(x) &= \tau, & \Gamma, x : \tau &\vdash t : \sigma, & \Gamma \vdash t : \sigma \to \tau, & \Gamma \vdash u : \sigma \\
\Gamma \vdash x : \tau, & \Gamma \vdash \lambda x. t : \tau \to \sigma, & \Gamma \vdash t u : \tau \\
\Gamma \vdash t : \tau, & \Gamma(a) = \#^k \tau, & \Gamma \vdash a \langle t \rangle : k, & \Gamma \vdash a(x). t : 0 \\
\Gamma, a : \#^k \tau &\vdash t : \tau, & \Gamma \vdash t : k, & \Gamma \vdash t' : k', & \Gamma \vdash 0 : 0 \\
\Gamma \vdash (\nu a) t : \tau, & \Gamma \vdash t \parallel t' : \max(k, k'), & \\
\end{align*}
\]
Typing rules

\[
\begin{align*}
\Gamma(x) &= \tau & \Gamma, x : \tau \vdash t : \sigma & \Rightarrow & \Gamma \vdash \lambda x. t : \tau \to \sigma \\
\Gamma \vdash x : \tau & & \Gamma \vdash t : \sigma \to \tau & \Rightarrow & \Gamma \vdash u : \sigma \\
\Gamma \vdash t : \tau & & \text{if } \Gamma(a) = \#^k \tau & \Rightarrow & \Gamma \vdash a(t) : k \\
& & \text{if } \Gamma(a) = \#^k \tau, x : \tau \vdash t : p < k & \Rightarrow & \Gamma \vdash a(x). t : 0 \\
\Gamma, a : \#^k \tau \vdash t : \tau & & \Gamma \vdash t : k & \Rightarrow & \Gamma \vdash (\nu a) t : \tau \\
\Gamma \vdash t : k & & \Gamma \vdash t' : k' & \Rightarrow & \Gamma \vdash t || t' : \max(k, k') \\
\Gamma \vdash 0 : 0
\end{align*}
\]
Typing rules

\[\Gamma(x) = \tau \quad \frac{\Gamma, x : \tau \vdash t : \sigma}{\Gamma \vdash \lambda x. t : \tau \rightarrow \sigma} \quad \frac{\Gamma \vdash t : \sigma \rightarrow \tau \quad \Gamma \vdash u : \sigma}{\Gamma \vdash t \ u : \tau} \]

\[\frac{\Gamma \vdash t : \tau \quad \Gamma(a) = \#^k \tau}{\Gamma \vdash \bar{a}\langle t \rangle : k} \quad \frac{\Gamma(a) = \#^k \tau \quad \Gamma, x : \tau \vdash t : p < k}{\Gamma \vdash a(x). t : 0} \]

\[\frac{\Gamma, a : \#^k \tau \vdash t : \tau}{\Gamma \vdash (\nu a)t : \tau} \quad \frac{\Gamma \vdash t : k \quad \Gamma \vdash t' : k'}{\Gamma \vdash t \parallel t' : \max(k, k')} \quad \Gamma \vdash 0 : 0 \]
Subtyping

- there are two (related) problems with the previous rules:
 - \(f \ (a(x). \ 0 \ || \ \bar{a}(\star)) \rightarrow f \ 0 \), does \(f \) have the type \(a \rightarrow \ldots \) or \(0 \rightarrow \ldots \) (subject reduction)?
 - if we have a process of level \(k \) why can’t we pass it to a function expecting a process of level \(k' > k \) (polymorphism)?

- one way to resolve that problem is to introduce subtyping.
 - \(k \sqsubseteq k' \) iff \(k \leq k' \) (types of processes)
 - \(\sigma \rightarrow \tau \sqsubseteq \sigma' \rightarrow \tau' \) iff \(\sigma' \sqsubseteq \sigma \) and \(\tau \sqsubseteq \tau' \)

- then we add the subsumption rule

\[
\Gamma \vdash t : \sigma \quad \sigma \sqsubseteq \tau \\
\hline
\Gamma \vdash t : \tau
\]
Termination in $\lambda\pi$

Theorem

Every well-typed term of $\lambda\pi$ is strongly normalizing.

Proof.

- proof by reducibility candidates.
- $[[k]] = \{ t, \Gamma \vdash t : k \text{ and } t \text{ is strongly normalizing} \}$
- for the λ part, everything goes as usual
- for the concurrent part, we need a lemma:
 - if $P \parallel Q$ reduces to R with a communication between P and Q, then $w(R) < w(P \parallel Q)$
 - same argument as in $\text{HO}\pi\omega$.

□
Comparison with the λ-calculus with regions ([Ama09])

- the λ-calculus with regions is a calculus that abstracts references, channels into the concept of regions
- two primitive operations
 - get(r) to read from a store (receive)
 - write(r, v) to write a value to a store (send)
- difference in operational semantics:
 - listen (in $\lambda\pi$): blocking, erases the value
 - get (in [Ama09]): non-blocking, leaves the value
Comparison with the λ-calculus with regions ([Ama09])

- The λ-calculus with regions is a calculus that abstracts references, channels into the concept of regions.

- Two primitive operations:
 - `get(r)` to read from a store (receive)
 - `write(r, v)` to write a value to a store (send)

- Difference in operational semantics:
 - `listen` (in $\lambda\pi$): blocking, erases the value
 - `get` (in [Ama09]): non-blocking, leaves the value

- Spawning example:
 - $t_1 \equiv (\lambda k. \lambda y. \text{set}(a, k); k \star) (\text{get } a)(\text{get } b)$
 - Then $t_1, (a \leftarrow (\lambda_. t_1))$ is ill-typed and loops

- Difference between type systems:
 - In $\lambda\pi$ we watch inputs
 - In [Ama09] we watch the type of the regions
Contents

HO_{π_ω} : Higher order π-calculus

$\lambda\pi$: higher order π-calculs with full λ-calculus

Soft-$\lambda\pi$: toward a bound on the length of reductions
as in soft-lambda calculus, we add two syntaxic constructions \(\lambda !x. \ t \) and \(!t \)

good : if \(\vdash t : \tau \) then \(t \) does at most \(f(t, \tau) \) reductions before reducing to a normal form

for HO\(\pi \omega\), such a system has been built in [LMS10]

we treat processes and \(\lambda \)-calculs separately

but we could have extended [LMS10] to \(\lambda \pi \) (no difficulty \(a \ priori \))
Typing rules

\[
\begin{align*}
\Gamma, x : \tau ; \Delta & \vdash t : \sigma \\
\Gamma ; \Delta & \vdash \lambda x . t : !\tau \to \sigma \\
\Gamma ; \Delta, x : \tau & \vdash t : \sigma \\
\Gamma ; \Delta & \vdash \lambda x . t : \tau \to \sigma \\
\Gamma ; \Delta_1 & \vdash t : \tau \to \sigma \\
\Gamma ; \Delta_2 & \vdash u : \tau \\
\Gamma ; \Delta_1, \Delta_2 & \vdash t \ u : \sigma \\
\Gamma & \cup \Delta(x) = \tau \\
\Gamma ; \Delta & \vdash x : \tau \\
\emptyset ; \Delta & \vdash t : \tau \\
\Gamma ; !\Delta, \Delta' & \vdash !t : !\tau \\
\Gamma ; \Delta_1 & \vdash t : e \\
\Gamma ; \Delta_2 & \vdash u : e' \\
\Gamma ; \Delta_1, \Delta_2 & \vdash t \parallel u : \max(e, e') \\
\Gamma, a : \#^k(\tau) ; \Delta & \vdash t : \sigma \\
\Gamma ; \Delta & \vdash (\nu a)t : \sigma \\
\Gamma ; \Delta & \vdash t : \tau \\
\Gamma(a) & = \#^k(\tau) \\
\Gamma ; \Delta & \vdash a(t) : k \\
\Gamma ; \Delta & \vdash 0 : 0 \\
\Gamma, x : \tau ; \Delta & \vdash t : e \\
\Gamma(a) & = \#^k(\tau) \\
e & < k \\
\Gamma ; \Delta & \vdash a(x) . t : 0 \\
\Gamma & \vdash t : \tau \\
\tau & \leq \sigma \\
\Gamma & \vdash t : \sigma
\end{align*}
\]
A bound

Theorem

Every well-typed term \(t \) of \(\text{Soft-} \lambda \pi \) normalizes in at most \(O(d^{n+k}) \) steps, where

- \(d \) is the number of occurrences of the variable (or name) that appears the most in \(t \) (duplicability factor)
- \(n \) is the number of channels used in \(t \);
- \(k \) is the box depth of \(t \) (maximum nesting of bangs appearing in \(t \)'s typing derivation)

- to ease reasoning we consider a derivation of \(t \) where channels are assigned different levels
- use of two measure: one for the concurrent aspects and one for the sequential aspects
- the “concurrent” bound is reached:
 - \(p_n \equiv (a_0(x).\overline{a}_1\langle x \parallel x \rangle) \parallel \ldots \parallel (a_{n-1}(x).\overline{a}_n\langle x \parallel x \rangle) \)
 - \(p_n \parallel \overline{a}_1\langle P \rangle \parallel a_n(x).x \) reduces to \(P \parallel \ldots \parallel P \) \(2^n \) times
Conclusion

To go further:

- see if the proof can be extended to more complex type systems for λ (e.g., System F)
- some ideas for type inference in $\lambda\pi$
- improve the bound (perhaps d^{n+k} where n is the highest level of names bound in t)
\pi\text{-calculus encoding into } \lambda\pi

two features needed: first-class channels and replication

first-class channels: ok (cf. example)

replication: through spawning,

$$[[!a(x).P]] = (\nu b) S \parallel \bar{b}\langle \lambda x. S \rangle, S = a(f). b(x). ([[P]] \parallel \bar{a}\langle f \rangle \parallel f ())$$
\(\lambda\pi\) versus the rest of the world

\(\lambda\pi\) versus:

- **[LMS10]**:
 - in \(\lambda\pi\): \(a(k) (k||\overline{a}\langle k\rangle)\) – different levels for \(x\)
 - in [LMS10]: \(a(x) . \overline{a}\langle x\rangle\) – reception body too large

- **[DHS10]**:
 - in \(\lambda\pi\): \(\overline{a}\langle \overline{a}\langle x\rangle\rangle\) – nesting output
 - in [DHS10]: \(a(x) . \overline{a}\langle x\rangle\) – reception body too large
Roberto M. Amadio.
On stratified regions.

R. Demangeon, D. Hirschkoff, and D. Sangiorgi.
Termination in higher-order concurrent calculi.
Journal of Logic and Algebraic Programming, 2010.

Y. Deng and D. Sangiorgi.
Ensuring termination by typability.

Ugo Dal Lago, Simone Martini, and Davide Sangiorgi.
Light logics and higher-order processes.