
Tutorial on concurrent games

Simon Castellan

March 24, 2015

Contents

1 Games and pre-strategies 2
1.1 Event structures . 2
1.2 Games . 3
1.3 Simple pre-strategies . 4
1.4 Pre-strategies on game A . 6
1.5 Toward a category of concurrent games? . 8

2 Pullback of event structures and stable families 9
2.1 Pullback of deterministic maps . 9
2.2 Stable families . 11
2.3 Pullback in stable families . 12
2.4 An adjunction . 13
2.5 Pullback in event structures . 14

3 A bicategory of concurrent games 15
3.1 Composition . 15
3.2 Examples of composition . 16
3.3 Innocence and receptivity . 16
3.4 Scott order . 17
3.5 Strategies and copycat . 17

4 Symmetry 18

5 Concurrent Hyland-Ond games 18

Introduction. This document is a presentation of (linear) concurrent games which are
a new foundation for game semantics based on event structures. The framework allows

1

for strategies to be event structures thus permitting to model behaviours (for instance
concurrency and non-determinism), and for games to be event structures to have more
general games that represent more behaviours.

1 Games and pre-strategies

To allow for more complex rules in the games, our games will be modelled by event
structures, the so-called “concurrent analogue of tree”. By featuring concurrency and
non-determinism they allow to express more complex behaviours than for instance usual
arenas in HO games.

1.1 Event structures

Definition 1. — An event structure is a tuple (A,≤, ConA) where (A,≤) is a partial order
of events and ConA ⊆ P f (A) is a set of finite subsets of A called the consistent subset of A,
satisfying the following axioms:

• ConA is down-closed with respect to inclusion (a subset of a consistent set is consistent)

• Singleton sets are consistent

• Whenever X is consistent in A, the down-closure of X,

[X]A = {a ∈ A | ∃a′ ∈ X, a ≤ a′}

is a consistent set.

• The set [a] = [{a}] is finite for every a ∈ A.

The order of an event structure represent causality: a ≤ a′ whenever for a′ to happen,
a must have occurred before. In particular, if a0 ≤ a and a1 ≤ a, then the occurrence of
both a0 and a1 is necessary for that of a. If ConA = P(A), A is called an elementary event
structure.

Two events that are consistent and not causally related are said to be concurrent. Con-
current events can occur together in any order.

Configurations. We define a configuration of A to be a finite set of events of A down-
closed for≤A and consistent. The set of configurations of A will be written C (A). The two
last axioms imply that for any a ∈ A, [a] is a configuration of A, called a prime configuration
of A. We will write [a) for [a] \ a which is also a configuration of A. Configurations are
naturally ordered by the inclusion.

Causalities. From ≤A, we extract the relation _A which is the least relation whose
transitive closure is ≤A, in other terms a _A a′ if and only if a < a′ and there is no

2

c ∈ A such that a < c < a′. A pair (a, a′) such that a _ a′ will be called a causality of A.
Moreover, if x ∈ C (A) and a ∈ A such that x ∪ {a} ∈ C (A) without a ∈ x, we say that x

extends by a and we write x
a
−−⊂ .

Event structures with binary conflict. An event structure (A,≤A, ConA) is said to
have binary conflict when ConA is generated by a binary relation] ⊆ A2 in the following
way:

ConA = {X ∈P(A) | ∀a1, a2 ∈ X,¬(a1]a2)}

The axioms on ConS are equivalent to asking that] is irreflexive, and if a]a′ with a′ ≤ a′′

then a]a′′ (the conflict is said to be inherited). A minimal conflict (notation a ∼∼ a′) is a
conflict which is not inherited, meaning that a]a′, along with [a, a′] \ {a} and [a, a′] \ {a′}
being consistent.

Drawing event structures with binary conflict. The only event structures we will
draw have binary conflict. To draw such event structures, we will draw _ and ∼∼ (from
which ≤ and] are easily recovered). For instance here is the classic example of coffee
machine:

· · · ·

·

@@^^

·

OO

·

OO

·

OO

·

@@^^

When events do not have meaningful names we draw them as ·. In the following we
only draw examples that have binary conflict however the theory does not restrict to that
case.

1.2 Games

Definition 2. — A game, or event structure with polarities is a pair (A, λA : A→ {�,⊕}).
Games are drawn similarly to event structures with the polarities drawn in exponent

of the events: for instance, here are the arenas Bool and Bool⇒ Bool of HO game seman-
tics:

·− ·−

·+ ·+ ·+

>>``

·+ ·+

·−

>>``

·−

``gg >>

3

We also will write ⊕ for ·+ and � for ·−. By reversing the polarities of a game A, one
gets the dual game A⊥.

Parallel composition. Given two event structures A and B we can form the event
structure A ‖ B (that extends the usual product of arenas) defined as follows:

• Events: {1} × A ∪ {2} × B (the disjoint union of A and B)

• Causal order: (i, a) ≤ (j, b) iff i = j = 1 and a ≤A b or i = j = 2 and a ≤B b

• Consistency: X ∈ ConA‖B iff {a ∈ A | (1, a) ∈ X} ∈ ConA and {b ∈ B | (2, b) ∈
X} ∈ ConB.

In a binary conflict (i, a)](j, a′) if and only if i = j and a]a′ in the corresponding compo-
nent. A direct consequence of this definition is the fact that configurations of the parallel
composition are made of a configuration of each component:
Lemma 1. — Let A and B be event structures. There is an order-isomorphism

(C (A ‖ B),⊆) ∼= (C (A)× C (B),⊆ × ⊆)

Proof. The bijection sends a configuration z ∈ C (A ‖ B) to (x, y) where x = {a ∈
A | (1, a) ∈ z} and y = {b ∈ B | (2, b) ∈ z} and its inverse sends a pair (x, y) to the
configuration

z = {(1, a) | a ∈ x} ∪ {(2, b) |b ∈ y}
It is routine to check those define the desired isomorphism.

Through this isomorphism we will often identify configurations of A ‖ B as pairs
of configurations of A abd B. If A and B are game, we define λA‖B(1, a) = λ(a) and
λA‖B(b) = λB(b) so that A ‖ B is a game.

Now that we defined what games are, we explain how we play on them.

1.3 Simple pre-strategies

Usually, a strategy is described as a set of plays satisfying some closure properties. In a
sequential settings, plays are sequences of moves, but as noticed here a better notion of
plays are configurations of a game. A first definition of strategy would be then: a set of
configurations of the game, down-closed for the inclusion. Doing so would lose us direct
access to causality. A better approach is: wonder what we want allow our strategies to
do, in a concurrent world.

For instance, what could be the possible strategies on the following games:

� ⊕ and ⊕ ⊕

�

>>``

4

Intuitively for the first game, there are three possible behaviours:

• play the ⊕ no matter what Opponent does

• play the ⊕ after Opponent played his � event, hence adding a causality �→ ⊕

• do nothing

For the second game, since causalities are already in place, there is not much we can
do:

• play as the game specifies: wait for Opponent and then answer concurrently the two
⊕

• wait for Opponent, and then only answer one of the ⊕ thus dropping the other one

• wait for Opponent, and then make a non-deterministic choice between the two pos-
itive events to play (adding a minimal conflict to the game)

• do nothing

Thus a strategy should be allowed to:

• ignore some positive events

• add some causalities

• add minimal conflict.

This can be formalized to define a simple pre-strategy on a game A as an event structure
(S,≤S, ConS) satisfying:

• S is a down-closed subset of A (wrt ≤A)

• ≤S⊇≤A (to add causalities),

• ConS ⊆ ConA (to add some conflicts).

Simple pre-strategies are easily drawn, just draw the event structure corresponding to
it. For instance, here is the simple pre-strategy corresponding to the negation on Bool ⇒
Bool.

�

$$

�

⊕

>>``

⊕ ⊕

�

>>``jj

5

Note that the three conditions on S can be more elegantly put by saying that a config-
uration of S is a configuration of A.

A very important example of simple pre-strategy is copycat. Define CCA to be the
following event structure:

• Events: those of A⊥ ‖ A

• Causal order: ≤CCA= (≤CCA ∪ →)∗ where→ is the relation defined as:

– (1, a)→ (2, a) when a is positive in A

– (2, a)→ (1, a) otherwise

• Consistency: that of A⊥ ‖ A.

It is easy to see that CCA satisfies all the condition of a simple pre-strategy written ccA
playing on A⊥ ‖ A. Copycat is a pre-strategy forwarding negative moves from one side
to the corresponding positive move on the other side. For instance, copycat on � ‖ ⊕
gives:

⊕ �oo

� // ⊕

(A⊥) (A)

A very important property that is going to be useful later on, is that copycat does not
add immediate causal link inside A or A⊥ – all extra links are between A and A⊥.

1.4 Pre-strategies on game A

However, there is a problem with this definition. What about strategies on the game:

⊕ � �

Among the behaviours we want to have, are: “I want to play ⊕ whenever Opponent
plays both negative events" and “I want to play ⊕ as soon as Opponent plays one his
events".

6

The first behaviour correspond to the simple strategy:

⊕

�

>>

�

``

What about the second? Because of the nature of the order, there is no way to say a
depends on b or c. But this process contains a race: because the two Opponent events are
received concurrently, two threads have to race to send the ⊕ event. It is a race, because
we want to send only one ⊕ event. Making this intuition clear yields the following event
structure with polarity:

⊕ ⊕

�

OO

�

OO

To account for that phenomenon, we define a pre-strategy as an event structure with
polarity S, along with a projection function σ : S → A. The function should satisfy that
x ∈ C (S) implies σx ∈ C (A) as before. Moreover, it should satisfy an injectivity condition
(since an inclusion can be seen as an injection), however in our case the function is not
injective since the two⊕ of S are sent to the unique⊕ of A. Therefore we only ask for local
injectivity, ie. σ restricted to a configuration is injective. It turns out these maps between
event structures are well-known:
Definition 3. — Let A and B be event structures. A map of event structures is a function
f : A→ B satisfying:

• For x ∈ C (A), f x ∈ C (B)

• f restricted to a configuration is injective.

A pre-strategy on a game A is an event structure S along with a map of event structures
σ : S→ A.

Note that σ induces a unique choice of polarities on S such that σ preserves them. We
can represent the second behaviour as the following pre-strategy:

· /

σ

((· � σ // ⊕

·

σ

99

OO

· $
σ

--

OO

� �

7

In the rest of the article, to draw a pre-strategy σ : S → A, we will draw the event
structure S and instead of the ·, for each event s we will draw its projection in the game
σs. The strategy will be denoted by σ, and S will be called its underlying event structure.

A simple pre-strategy is just a pre-strategy of the form idA′ : A′ → A. Note that given
pre-strategies σ : S → A and τ : T → B, we have a pre-strategy σ ‖ τ : S ‖ T → A ‖ B
defined naturally as (σ ‖ τ)(1, s) = σs and (σ ‖ τ)(2, s) = τs.

The category of event structures. Event structures and their maps form a category
written ES . Because of the local injectivity constraint, it does not have a terminal object.
But it has pullbacks and products as we will see later. It also has sums (but not coequaliz-
ers), but we will not make use of that.

On maps of event structures. There is no condition in the definition of maps of event
structures for preservation of order or conflict. However, because of the requirement on
configurations, a map of event structures preserves consistency (thus reflects conflicts)
and reflects the order on consistent events: for all consistent a, a′ ∈ A such that f a ≤B f a′

then a ≤A a′.
Isomorphism of pre-strategies. Since our pre-strategy can choose freely the S, we

don’t want to identify strategies by equality of their underlying event structures and their
maps. Unless, we ask that there is an isomorphism (in the category of event structures)
between the underlying event structures that commutes with the projection on the game.
Two strategies σ : S → A and τ : T → A are isomorphic whenever there exists an
isomorphism ϕ : S ∼= T in ES such that τ ◦ ϕ = σ.

To prove isomorphism of event structures, the following lemma will be useful.
Lemma 2. — Let S and T be event structures. There is an order-isomorphism ϕ between
(C (S),⊆) and (C (T),⊆), if and only if S and T are isomorphic. Moreover, if σ : S → A
and τ : T → A are pre-strategies, and ϕ satisfies ϕ; τ = σ : C (S) → C (A), σ and τ are
isomorphic.

Proof. If S and T are isomorphic it is direct to see that the induced maps on configurations
is an order-isomorphism.

Let ϕ : C (S) → C (T) be an order isomorphism. By an easy induction, this implies
that ϕ preserves cardinality of finite sets. Thus given a ∈ A, we have that ϕ[a] \ ϕ[a)
has cardinal 1, ie. is a singleton we call f (a). It easy to see that a 7→ f (a) defines an
isomorphism f : S ∼= T.

Moreover, if ϕ; τ = σ, it is straightforward to check that we indeed have f ; τ = σ :
S→ A.

1.5 Toward a category of concurrent games?

Following the usual tradition on game semantics, we define a pre-strategy from a game A
to a game B as a pre-strategy on the game A (B = A⊥ ‖ B. (Note that there is no need

8

to make the initial events of A depend on those of B as we are not working in a polarized
setting).

We have seen how to define the pre-strategy ccA : CCA → A⊥ ‖ A that can be seen as a
strategy from A to A that will be our identity. We now need to define the composition of
two strategies and explain how they interact with each other.

Let σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C be composable pre-strategies. We need to
explain how to form their composition, denoted τ � σ. As usual in game semantics the
composition will be defined in two steps:

1. Interaction of τ against σ over the game B

2. Hiding of the “internal events”, ie. those sent to B

Hiding is an easy operation to define on event structures, it corresponds to projection.
Interaction though is more subtle to define, as it is usually defined, on sequences. The
trick is to consider the following pullback (forgetting about polarities):

T ~ S

yy &&
S ‖ C

σ‖C %%

A ‖ T

A‖τyy
A ‖ B ‖ C

which exactly captures what the interaction should be (it will be made clear later on).

2 Pullback of event structures and stable families

2.1 Pullback of deterministic maps

In this section, we consider two maps of event structures f : A→ C and g : B→ C whose
pullback we would like to build. A pullback would a triple (P, π1, π2) with π1 : P → A
and π2 : P → B satisfying the commutation f ◦ π1 = g ◦ π2. A naive answer to that
problem would be to consider the pullback of f and g in sets A ×C B = {(a, b) ∈ A ×
B | f a = gb}. Since π1 and π2 need to preserve consistency, we could set:

ConA×C B = {X ∈ A×C B | π1X ∈ ConA &π2X ∈ ConB}

As for causalities, since π1 and π2 need to reflect the order we could merge the causal-
ities of A and B as follows. Define (a, b) → (a′, b′) as {(a, b), (a′, b′)} ∈ ConA×C B and
a <A a′ or b <B b′, and write ≤A×C B for its transitive and reflexive closure. Note that we

9

need to be careful to impose that events related by→ are consistent as it is not automatic:
we could have a ≤A a′ and {b, b′} 6∈ ConB.

This fails to be an order – it might not be antisymmetric as→ could have loops as in
the following picture:

a //
�

&&

b �

&&

a0

xx

boo 0

xxa b
We need to restrict A×C B to the subset of elements that are not involved is loops. An

element e ∈ A×C B is said to be well-founded if there is no infinite descending sequence
e = e1 ← e2 ← e3 ← Call P the subset of well-founded elements of A×C B.
Lemma 3. — The restriction ≤P of ≤A×C B to P is a partial order on P such that for every p ∈ P,
[p] is finite.

Proof. It is clear that ≤P is reflexive and transitive. Assume we have p ≤P p′ and p′ ≤P p.
This means that p →∗ p′ →∗. If one of those two sequences is non-empty, then we could
create an infinite sequence p →+ p →+→ . . . thus contradicting the well-foundedness of
p.

Assume now p ∈ P. We know that every desceding path starting from p is finite –
we can thus reason by induction on the maximal length of such a sequence. Call X the
set of immediate predecessor of p for→. We know that for each a ∈ X, [a] must be finite
by induction. Thus we have only to check that there is a finite number of them. But for
each a ∈ X we have either π1a ≤ π1 p or π2a ≤ π2 p, thus. Thus either π1a ∈ [π1 p] or
π2a ∈ [π2 p] both finite sets. Since π1 and π2 must be injective on [p], we must have that
X is finite.

We let ConP = ConA×C B ∩P(P). However, P fails to be an event structure in the
general case. Consider the following situation:

· �

''

·~

��

·~

��

·0

ww

// ·0

ww· ·
Computing P yields the following “event structure”.

·

&& ·

·

88

10

It is not an event structure because the down-closure of the maximal event is not a
configuration. It turns out that there is no easy way to fix that problem in order to have
an event structure. Causality and consistency needs to be inductively defined. However
if A and B have no inconsistent sets, then this the pullback:
Lemme 1. — If ConA = P(A) and ConB = P(B) then P is an event structure and (P, π1, π2)
is a pullback.

Proof. We have checked already that prime configurations are finite and since we don’t
have inconsistency this the only thing to check. Clearly f ◦ π1 = g ◦ π2. Now assume
we have an event structure X with two maps ϕ : X → A and ψ : X → B. Because
A ×C B is a pullback in set we get a unique function h : X → A ×C B that makes the
triangles commute. The only need left to check is that h’s range is actually P. First we
show that h(a) → h(a′) implies a ≤ a′ if a and a′ are consistent. Indeed assume for
instance π1(h(a)) ≤ π1(h(a′)). This means that ϕa ≤ ϕa′ and then a ≤ a′ because ϕ is a
map of event structures.

Assume a ∈ X is such that h(a) is not well-founded, ie. h(a) = p1 ← p2 ←
Because h[a] is a configuration, there exists pi ∈ [a] such that h(pi) = ai. All the ai are
consistent, thus by the previous remark, a ≥ a1 ≥ . . . which is absurd because X is an
event structure.

Computing the pullbacks of general event structures will be more elegantly done by
doing in a broader space, that of stable families that include the previous example.

2.2 Stable families

Stable families are a generalization of event structures allowing for causal disjunctives.
They generalize the configuration domains of an event structure.
Definition 4. — A stable family is a pair (A,FA) where A is a set, and FA ⊆ P f (A) (called
the set of configurations of A) such that:

• Completeness: Forall Z ⊆ FA, if Z is bounded then
⋃

Z ∈ FA

• Stability: Forall Z ⊆ FA, if Z is non-empty and bounded, then
⋂

Z ∈ FA

• Coincidence-freeness: Forall x ∈ F , and e, e′ ∈ x distinct, there exists y ∈ FA included
in x such that y contains exactly one of the events e and e′.

• A =
⋃FA

For any event structure A, the pair (A, C (A)) is a stable family, but we obviously have
more expressivity power. Consider for instance the following stable family on the set
A = {a, b, c}:

11

{a, c} {b, c}

{a, b}

{a} {b}

∅

This stable family represents a causal disjunction: c can happen after a or b. There is
no way to make A into an event structures such that this is its configuration domain.

Maps of stable families. Let (A,FA) and (B,FB) be stable families. A map from
(A,FA to (B,FB) is a function f : A → B such that if x ∈ FA then f x ∈ FB and f
restricted to an element of FA is injective.

This definition extends the one on event structures and we have a category SF of
stable families.
Lemma 4. — A 7→ (A, C (A)) is a full and faithful functor ES → SF .

2.3 Pullback in stable families

In this more general category, we describe how to build pullbacks. Let f : (A,FA) →
(C,FC) and g : (B,FB)→ (C,FC) be maps of stable families.

We write A ×C B for the pullback in set of f and g. On this set we define the stable
family F consisting in those subsets X ⊆ A×C B such that:

• π1X ∈ FA and π2X ∈ FB

• π1 and π2 are injective on X

• Forall e, e′ ∈ X distinct, there exists a Y ⊆ X containg one of e and e′ and such that
π1Y ∈ FA and π2Y ∈ FB.

The first two requirements ensures that the projections are maps of stable families
and the last one that F is coincidence free. Moreover, coincidence-freeness is what kills
deadlock, since for the previous example of a deadlock, {(a, a), (b, b)} will not be in F as
it is not coincidence-free (neither {(a, a)} nor {(b, b)} are in FX).
Lemma 5. — F is a stable family.
Proposition 1. — (F , π1, π2) is a pullback of f and g.

12

Proof. By definition of F , π1 and π2 are maps of stable families and we have f ◦ π1 =
g ◦ π2. Assume we have ϕ : (Z,FZ) → (A,FA) and ψ : (Z,FZ) → (B,FB) such that
f ◦ ϕ = g ◦ ψ.

By the definition of pullbacks, there is a unique map (in Set) h : X → A×C B which
makes the diagram commute. Thus the only need to check is that it is actually a map of
stable families. On a x ∈ FX, h has to be injective because π1 ◦ h = ϕ and ϕ is injective on
x by definition of maps of stable families. Moreover if x ∈ FX, hx ∈ F (all properties are
easy to show).

We have seen how stable families help us solve the first problem, what about the sec-
ond one? Duplication in stable families is not done concretely: we have the same events
as for the pullback in sets. But if we look at the stable family we get for the second ex-
ample (with the duplication) we get a stable family that does not correspond to an event
structure. To actually get an event structure, we will need to perform the duplication, and
this is what we describe now.

2.4 An adjunction

Finally, how we unfold the causal disjonctions from stable families to event structures by
means of an adjunction.

The prime construction. Let (A,FA) be a stable family. First we show how to recover
the orders on the elements of FA. Let x ∈ FA. We define the order ≤x on x by:

a ≤x b iff ∀y ∈ FA such that y ⊆ x, b ∈ y⇒ a ∈ y

Which means: for all subconfigurations of x, if b appears in it, a must have appeared
before. Given x ∈ FA and a ∈ x, we define the prime configuration of a inside x as the
down-closure of {a} for ≤x:

[a]x = {b ∈ x |b ≤x a}

Note that in a stable family the prime configuration associated to an event depends on
the ambient history. In the example above, we have [c]{a,c} = {a, c} and [c]{b,c} = {b, c}.

From the stable family (A,FA) we are now ready to define an event structure written
Pr(A) and defined as follows:

• Events: All the prime configuration of the form [a]x for a ∈ x ∈ FA.

• Causal order: Inclusion of prime configuration

• Consistency: a set of prime configurations X is consistent in Pr(A) whenever
⋃

X ∈
FA

13

It is easy to check it defines an event structure. Moreover, we have the following
property:
Lemma 6. — Let A be an event structure. There is a (natural) isomorphism Pr(A, C (A)) ∼= A.

Proof. The isomorphisms consists in the map a 7→ [a][a] : A→ Pr(A, C (A)) and [a]x 7→ a :
Pr(A, C (A))→ A.

It is easy to turn Pr(·) into a functor SF → ES by letting Pr(f)([a]x) = [f a] f x for
f : (A,FA)→ (B,FB).
Proposition 2. — Pr(·) is right adjoint to C (·). (And thus ES is coreflective in SF)

Proof. We have already described the unit Id → Pr(C (·)). We now describe the counit
C (Pr(A)) → A for a stable family (A,FA). The maps on events is given by [a]x → a and
it is easy to check that this is a map of stable family, natural in A and satisfies the required
diagrams.

Moreover, even then C (Pr(·)) is not naturally isomorphic to Id (because of the dupli-
cation – thus the set of events is not the same), we still have this result:
Lemma 7. — For every stable family (A,FA), there is an order-isomorphism

(FA,⊆) ∼= (C (Pr(A)),⊆).

Proof. If x ∈ FA, then {[a]x | a ∈ x} is a configuration of Pr(A). Conversely if x ∈
C (Pr(A)), then by definition of consistency,

⋃
x ∈ F .

2.5 Pullback in event structures

From the adjunction and the existence of pullbacks in SF we can conclude for pullbacks
in ES .
Lemma 8. — Let f : A → C and g : B → C be maps of event structures. The pullback of f and
g exists.

Proof. We have C (f) : C (A) → C (C) and C (g) : C (B) → C (C) in SF . It has a pullback
(P, π1, π2). Because Pr(·) is a right adjoint, it preserves limits and in particular pullbacks,
thus (Pr(P), Pr(π1), Pr(π2)) is pullback of Pr(C (f)) and Pr(C (g)). By the natural isomor-
phism A ∼= Pr(C (A)) we get that Pr(P) is also a pullback of f and g in ES .

From this abstract definition, we can get a concrete grip on the configurations of a
pullback through the notion of secured bijection.
Definition 5. — Let f : A → B be a bijection between two orders A and B. f is secured when
the transitive closure of→ defined as follows is an order. a→ a′ when a ≤ a′ or f (a) ≤ f (a′).

A bijection is secured if it there is no deadlock between the orders A and B.

14

Proposition 3. — Let f : A→ C and g : B→ C be maps of event structures and let (P, π1, π2)
be their pullback. The map z ∈ C (P) 7→ (π1z, π2z) defines an order-isomorphism between C (P)
and the following set

{(x, y) ∈ C (A)× C (B) | σx = τy & the bijection x ∼= σx = τy ∼= y is secured}

ordered by pairwise inclusion.
The secured hypothesis takes care of removing the causal loops by ensuring that the

union of the orders stays an order. By Lemma 2, this characterizes up to isomorphism the
event structures of the pullback. We can also have a grip of the causality in the pullback:
Lemma 9. — Let (P, π1, π2) be a pullback of f : A → C and g : B → C. Then if e _P e′ then
π1e _ π1e′ or π2e _ π2e′.

This lemma states that immediate causality _ in P contains the union of causalities in
A or B. The converse is not true though because immediate causalities in A for instance
have to be related by ≤P but the causality need not be immediate anymore.

3 A bicategory of concurrent games

3.1 Composition

With pullbacks we can define now the interaction of a pre-strategy σ : S → A⊥ ‖ B and
τ : T → B⊥ ‖ C as the following pullback:

T ~ S

yy &&
S ‖ C

σ‖C %%

A ‖ T

A‖τyy
A ‖ B ‖ C

To get the actual composition from this interaction, we restrict T ~ S to those events
that are sent to A or C (called visible events):

T � S = {p ∈ T ~ S | (σ ‖ C)(π1 p) ∈ A ‖ C}

and the order and the consistent set is inherited from T ~ S. We have a map of event
structures τ � σ : T � S → A⊥ ‖ C. Even though composition requires the pullbacks
whose construction is very indirect, we have seen that in the case without inconsistency
how to easily compute the nteraction.

15

3.2 Examples of composition

. . . TODO. . . In this section, we let the B game to be
Sequential strategies. As an example of composition, let us see if copycat, our candi-

date behaves well with respect to composition.
Recall our negation strategy that plays on B⊥ ‖ B:

�tt // ⊕tt

�ff // ⊕ff

B⊥ B

We want to compute neg� ccA which involves only strategies whose event structures
are elementary, so it is enough to make the pullback on set, and merge the causalities,
which gives us:

3.3 Innocence and receptivity

In an event structure with polarities, we write for x ⊆+ y for x ⊆ y and y \ x consists in
only positive events. Likewise we define x ⊆− y for negative extensions.

When we try to compute composition with copycat, sometimes it fails. We need to
look for the class of strategies that commutes with copycat, ie. strategies σ : S → A such
that ccA � σ ∼= σ. This first Lemma tells us that this statement is equivalent to composing
copycat both on the input and the output of strategy:
Lemma 10. — Let σ : S→ A⊥ ‖ B be a pre-strategy. We have the following isomorphism:

ccB � σ� ccA
∼= σ

Definition 6. — Let σ : S→ A be a pre-strategy.

• σ is courteous when for all causalities s _ s′ such that either s is positive or s′ negative,
σs _A σs′

• σ is receptive when, for every configuration x ∈ C (S) such that σx ⊆− y with y ∈ C (A),
then there exists a unique x ⊆ x′ ∈ C (S) such that σx′ = y.

A strategy will be a courteous and receptive pre-strategy.
Recall that given a monotone function f from an order (A,≤A) to an order (B,≤B) is

a discrete fibration when for every a ∈ A and b ∈ B such that b ≤ f a there exists a unique
a′ ≤ a ∈ A such that f a′ = b. Thus receptivity exactly means that σ : (C (S),⊇−) →
(C (A),⊇−) is a discrete fibration. Can we express innocence in the same way?

16

Lemma 11. — Let σ : S → A be a receptive pre-strategy. Then σ is innocent if and only if
σ : (C (S),⊆+)→ (C (A),⊆+) is a discrete fibration.

3.4 Scott order

This definition of strategies invites us to define a new order, called the Scott order defined
on configurations of an event structure with polarity A. We define x v y as x ⊇−⊆ y.
This is equivalent to x ⊇− x ∩ y ⊆+ y. The Scott order is indeed an order, and we have
that:
Lemma 12. — Let σ : S → A be a pre-strategy. It is a strategy if and only if it is a discrete
fibration wrt the Scott order on C (S) and C (A).

Moreover, we also have:
Lemma 13. — Configurations of copycat are order-isomorphic to pairs (x, y) ∈ C (A)× C (A)
with y v x, ordered by pairwise inclusion.

The Scott order is called that way because intuitively x v y means that y contains
more information about the behaviour of player: he will play more events having received
more information. If wee copycat as a relation between an input configuration of A and
an output configuration of A, we see that copycat outputs less information that what
received.

3.5 Strategies and copycat

Now we wish to prove that our condition are right in the sense that they capture exactly
the pre-strategies behaving well wrt copycat which acts as a forwarder.

Thanks to Lemma 10, we only have to study the case where copycat is “applied” to a
strategy on A. Let σ : S→ A be a pre-strategy on A.
Lemma 14. — Configurations of CCA ~ S are order-isomorphic to pairs (x, y) ∈ C (S)× C (A)
such that y v σx.

Thus interacting with copycat induces delay: what we see is y but what the strategy
has performed is σx.

Configurations of the composition correspond to configurations of the interaction whose
maximal events are all sent to the visible part. In our case, it means that:
Lemma 15. — Configurations of CCA � S are order-isomorphic to pairs (x, y) ∈ C (S)× C (A)
such that y v σx, satisfying that all maximal events s of x are negative and are such that σs ∈ y.

Thus configurations of the composition correspond exactly to those configurations of
the interaction where all maximal events played by S are propagated. From that lemma it
is easy to conclude:
Lemma 16. — There is an isomorphism γA � σσ ∼= σ if and only if σ is a strategy.

17

4 Symmetry

TODO: write on symmetry

5 Concurrent Hyland-Ond games

18

	Games and pre-strategies
	Event structures
	Games
	Simple pre-strategies
	Pre-strategies on game A
	Toward a category of concurrent games?

	Pullback of event structures and stable families
	Pullback of deterministic maps
	Stable families
	Pullback in stable families
	An adjunction
	Pullback in event structures

	A bicategory of concurrent games
	Composition
	Examples of composition
	Innocence and receptivity
	Scott order
	Strategies and copycat

	Symmetry
	Concurrent Hyland-Ond games

