The parallel intensionally fully abstract games model of PCF

Simon Castellan ${ }^{1}$, Pierre Clairambault ${ }^{1}$, Glynn Winskel ${ }^{2}$

${ }^{1}$ LIP, ENS Lyon
${ }^{2}$ Computer Laboratory, University of Cambridge
May 12th 2016 - CHoCoLa

An implementation for if

How to describe the behaviour of if : $\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$?

An implementation for if

How to describe the behaviour of if : $\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$?

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b.
- When the evaluation returns ttrue:
- Evaluate t.
- When the evaluation returns b_{1} :
- Return b_{1} to the caller.
- When the evaluation returns false:
- Evaluate u.
- When the evaluation returns b_{2} :
- Return b_{2} to the caller.

Alternation between actions and information from the environment.

A concurrent implementation for if

An alternative implementation for if:

A concurrent implementation for if

An alternative implementation for if:

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.
- When the evaluation of b returns true, and when the evaluation of t returns b_{1} :
- Return b_{1} to the caller.
- When the evaluation of b returns false, and when the evaluation of u returns b_{2} :
- Return b_{2} to the caller.

Questions:

- Is there a context that can distinguish these implementations?

A concurrent implementation for if

An alternative implementation for if:

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.
- When the evaluation of b returns true, and when the evaluation of t returns b_{1} :
- Return b_{1} to the caller.
- When the evaluation of b returns false, and when the evaluation of u returns b_{2} :
- Return b_{2} to the caller.

Questions:

- Is there a context that can distinguish these implementations? yes: (if tt then () else $(x:=1)$); ! x

A concurrent implementation for if

An alternative implementation for if:

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.
- When the evaluation of b returns true, and when the evaluation of t returns b_{1} :
- Return b_{1} to the caller.
- When the evaluation of b returns false, and when the evaluation of u returns b_{2} :
- Return b_{2} to the caller.

Questions:

- Is there a context that can distinguish these implementations? yes: (if $t \mathrm{t}$ then () else $(x:=1)$); ! x
- Is there a pure context?

Formalizing implementations: P-view trees

$\mathbb{B} \longrightarrow \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do: q

Formalizing implementations: P-view trees

$\mathbb{B} \longrightarrow \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b.

Formalizing implementations: P-view trees

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b.
- When b evaluates to ttrue:
- Evaluate t.
- When t evaluates to b_{1} :
- Return b_{1} to the caller.
- When it evaluates to false:
- Evaluate u.
- When u evaluates to b_{2} :
- Return b_{2} to the caller.

Formalizing implementations: P-view trees

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b.
- When b evaluates to ttrue:
- Evaluate t.
- When t evaluates to b_{1} :
- Return b_{1} to the caller.
- When it evaluates to false:
- Evaluate u.
- When u evaluates to b_{2} :
- Return b_{2} to the caller.

Formalizing implementations: P-view trees

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b.
- When b evaluates to ttrue:
- Evaluate t.
- When t evaluates to b_{1} :
- Return b_{1} to the caller.
- When it evaluates to false:
- Evaluate u.
- When u evaluates to b_{2} :
- Return b_{2} to the caller.

Formalizing implementations: P-view trees

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b.
- When b evaluates to ttrue:
- Evaluate t.
- When t evaluates to b_{1} :
- Return b_{1} to the caller.
- When it evaluates to false:
- Evaluate u.
- When u evaluates to b_{2} :
- Return b_{2} to the caller.

Formalizing implementations: P-view trees

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b.
- When b evaluates to ttrue:
- Evaluate t.
- When t evaluates to b_{1} :
- Return b_{1} to the caller.
- When it evaluates to false:
- Evaluate u.
- When u evaluates to b_{2} :
- Return b_{2} to the caller.

Innocent Hyland-Ong game semantics: composition of P-view trees.

Towards P-view dags

$\mathbb{B} \longrightarrow \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:

Towards P-view dags

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.

Towards P-view dags

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.

Towards P-view dags

$\mathbb{B} \longrightarrow \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$

b_{1}

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.
- Return b_{1} to the caller.

Towards P-view dags

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.
- When b evaluates to ttrue, and when t evaluates to b_{1} :
- Return b_{1} to the caller.

Towards P-view dags

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.
- When b evaluates to ttrue, and when t evaluates to b_{1} :
- Return b_{1} to the caller.
- Return b_{2} to the caller.

Towards P-view dags

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.
- When b evaluates to ttrue, and when t evaluates to b_{1} :
- Return b_{1} to the caller.
- When b evaluates to false, and when u evaluates to b_{2} :
- Return b_{2} to the caller.

Towards P-view dags

- Given $b: \mathbb{B}$ and $t, u: \mathbb{B}$, do:
- Evaluate b, t, u in parallel.
- When b evaluates to ttrue, and when t evaluates to b_{1} :
- Return b_{1} to the caller.
- When b evaluates to false, and when u evaluates to b_{2} :
- Return b_{2} to the caller.

How to compose them?

A language of pure contexts: PCF

As a language describing pure contexts, we use PCF:

$$
\begin{aligned}
A, B:: & =\mathbb{B}|\mathbb{N}| A \rightarrow B \\
t, u:: & \lambda x \cdot t|t u| x \\
& \left|t t^{\mathbb{B}}\right| f f^{\mathbb{B}} \mid \mathrm{if}^{\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}} \\
& \left|\bar{n}^{\mathbb{N}}\right| \operatorname{succ}^{\mathbb{N} \rightarrow \mathbb{N}}\left|\operatorname{pred}^{\mathbb{N} \rightarrow \mathbb{N}}\right| \text { zero? }^{\mathbb{N} \rightarrow \mathbb{B}} \\
& \mid Y^{(A \rightarrow A) \rightarrow A}
\end{aligned}
$$

Big-step semantics. $t \Downarrow k(\vdash t: \mathbb{N}, k \in \mathbb{N})$

This talk

1. Give a compositional account of "P-view dags". Composition of linear terms to focus on concurrency aspects.
2. Understand which dags arise from pure terms.

Generalize the notion of innocence and well-bracketing.
3. Build a model of PCF using "P-view dags".

Composing them by unfolding (something else than plays).
4. Prove intensional full-abstraction.

Contextual equivalence coincide in the syntax and semantics.

I. Composing linear concurrent strategies

Representation of types: arenas

Arenas are semantic representations of types as partial orders:

Definition (Arenas)

An arena is a tuple $\left(A, \leq_{A}, \lambda: A \rightarrow\{O, P\} \times\{Q, A\}\right)$ where:

- (Alternation) If $a \rightarrow A a^{\prime}$ then a and a^{\prime} have different polarities
- (Forest) If $b, c \in A$ are below $a \in A$, they are comparable.
- (Answers) Answers are never minimal and always maximal.
$a \rightarrow a^{\prime}: a<a^{\prime}$ with no events in between $\left(\vdash_{A}\right.$ in game semantics.)
Examples:

Constructions on arenas

- Dual: A^{\perp} with the labelling $\lambda^{O P}$ reversed.
- Product: $A \| B$ is obtained by putting A and B side-by-side:

- Linear arrow: $A \multimap B$ is defined as $A^{\perp} \| B$

Example: $\mathbb{N} \multimap((\mathbb{N} \multimap \mathbb{B}) \| \mathbb{N})=\mathbb{N}\left\|\mathbb{N}^{\perp}\right\| \mathbb{B} \| \mathbb{N}$.

Linear strategies

Strategy: causal enrichment of the arena with links $a \rightarrow b$.
Definition (Linear strategy)
A linear strategy on A is a partial order $\left(S, \leq_{S}\right)$ such that:

- (Rule-obeying) S is a down-closed subset of A and $\leq_{A} \subseteq \leq_{S}$
- (Receptivity) If $s \in S^{+}$and $s \rightarrow a \in A$ then $a \in S$
- (Courtesy) If $s \rightarrow S s^{\prime}$ and not $s \rightarrow A s^{\prime}$ then s is negative and s^{\prime} positive.
We write S : A.

The justifier of $s \in S$ is given by its predecessor for \leq_{A}.

Examples of linear strategies

$$
\begin{aligned}
S=\llbracket \lambda b \cdot\left(\left(\lambda b^{\prime} . b^{\prime}\right), \mathrm{tt}\right) \rrbracket & : \mathbb{B} \multimap((\mathbb{B} \multimap \mathbb{B}) \| \mathbb{B}) \\
& =\mathbb{B}^{\perp}\left\|\mathbb{B}^{\perp}\right\| \mathbb{B} \| \mathbb{B}
\end{aligned}
$$

Examples of linear strategies

$$
\begin{aligned}
& S=\llbracket \lambda b .\left(\left(\lambda b^{\prime} . b^{\prime}\right), \mathrm{tt}\right) \rrbracket \\
& : \mathbb{B} \multimap((\mathbb{B} \multimap \mathbb{B}) \| \mathbb{B}) \\
& =\mathbb{B}^{\perp}\left\|\mathbb{B}^{\perp}\right\| \mathbb{B} \| \mathbb{B} \\
& T=\llbracket \lambda(f, b) \text {.if } f \text { ff then } b \text { else } \perp \rrbracket:((\mathbb{B} \multimap \mathbb{B}) \| \mathbb{B}) \multimap \mathbb{B} \\
& =\mathbb{B}\left\|\mathbb{B}^{\perp}\right\| \mathbb{B}^{\perp} \| \mathbb{B}
\end{aligned}
$$

The copycat strategy

A particular linear strategy $A^{\perp} \| A$: copycat.

It delays a positive move by the corresponding negative move:

copycat will behave as identity wrt composition of strategies.

A glimpse on the composition process

$S \circledast T: \mathbb{B} \multimap((\mathbb{B} \quad \multimap \quad \mathbb{B}) \| \mathbb{B}) \multimap \mathbb{B}$

A glimpse on the composition process

$S \circledast T: \mathbb{B} \multimap((\mathbb{B} \quad \multimap \quad \mathbb{B}) \| \mathbb{B}) \multimap \mathbb{B}$
q

A glimpse on the composition process

$S \circledast T: \mathbb{B} \multimap((\mathbb{B} \multimap \mathbb{B}) \| \mathbb{B}) \multimap \mathbb{B}$

A glimpse on the composition process

$S \circledast T: \mathbb{B} \multimap((\mathbb{B} \quad \multimap \quad \mathbb{B}) \| \mathbb{B}) \quad \multimap \quad \mathbb{B}$

A glimpse on the composition process

$S \circledast T: \mathbb{B} \multimap((\mathbb{B} \multimap \mathbb{B}) \| \mathbb{B}) \multimap \mathbb{B}$

A glimpse on the composition process

$S \circledast T: \mathbb{B} \multimap((\mathbb{B} \multimap \mathbb{B}) \| \mathbb{B}) \multimap \mathbb{B}$

A glimpse on the composition process

$S \circledast T: \mathbb{B} \multimap((\mathbb{B} \quad \multimap \quad \mathbb{B}) \| \mathbb{B}) \multimap \mathbb{B}$

A glimpse on the composition process

$T \odot S: \mathbb{B} \multimap$

A global view on interaction

A global view on interaction

A global view on interaction

\rightarrow Interaction of strategies on dual arenas.

Interaction

Assume S a linear strategy on A and T on A^{\perp}.
The pre-order I. We define the following pre-order I as follows:

- Events: $S \cap T$
- Causality: Transitive closure of $\left(\leq_{S} \cup \leq_{T}\right) \cap I^{2}$

Interaction

Assume S a linear strategy on A and T on A^{\perp}.
The pre-order I. We define the following pre-order I as follows:

- Events: $S \cap T$
- Causality: Transitive closure of $\left(\leq_{S} \cup \leq_{T}\right) \cap I^{2}$

Causal loops. I is not a partial-order in general. For example

$$
A=\text { Drug Money }
$$

$$
S: A=\text { Drug } \rightarrow \text { Money } \quad T: A^{\perp}=\text { Drug } \leftrightarrow \text { Money }
$$

I is $\operatorname{Drug}_{\nless} \longrightarrow$ Money: there is a causal loop.
To remove those loops, we introduce the notion of secured events.

Secured events

An event $e \in I$ is secured when there exists $e_{0}, \ldots, e_{n}=e$ in I such that

$$
\emptyset \subseteq\left\{e_{0}\right\} \subseteq\left\{e_{0}, e_{1}\right\} \subseteq \ldots \subseteq\left\{e_{0}, \ldots, e_{n}\right\}=\downarrow e
$$

and all the sets are down-closed in I.

Lemma
The set of secured events of I along with the preorder induced by \leq_{I} is a partial-order $S \wedge T$.

When all events are secured, the interaction is deadlock-free.

Composition of linear strategies

Let $S: A^{\perp} \| B$ and $T: B^{\perp} \| C$.

1. Interaction: we compute the interaction

$$
S \circledast T=\left(S \| C^{\perp}\right) \wedge(A \| T)
$$

The events live in $A\|B\| C$.
2. Hiding: we define the linear strategy $T \odot S$ as follows: Events The events $e \in S \circledast T$ that live in A or C. Causality Induced by $\leq_{\left(S \| C^{\perp}\right) \circledast(A \| T)}$

Theorem (Rideau-Winskel)
This composition is associative and linear strategies and arenas form a compact-closed category.

Negative category

PCF being call-by-name, types should be negative arenas (minimal events are negative)
But \multimap does not preserve negativity!
Workaround: We use the usual arrow construction on arenas:

Under mild hypothesis on strategies:

$$
\{S: A \multimap B\} \simeq\{S: A \rightarrow B\}
$$

\rightarrow Monoidal-closed category of negative arenas and "nice" strategies.

II. Innocent and well-bracketed strategies

Non-innocent behaviours

Which strategies arise as interpretation of pure (linear) terms?
For instance both? is not definable in a pure language:

Non-innocent behaviours

Which strategies arise as interpretation of pure (linear) terms?
For instance both? is not definable in a pure language:

Problem: Player is merging threads started by opponent.

A notion of concurrent innocence

A thread of a strategy $S: A$ is a sequence in S
$s_{0} \rightarrow s_{1} \rightarrow \ldots \rightarrow s_{n}$ with s_{0} minimal.

Definition
A linear strategy without the following pattern is pre-innocent:

$$
s_{0} \rightarrow \cdots \mapsto s_{i} \stackrel{\nabla}{s_{i+1} \rightarrow \cdots \mapsto s_{n-1}} \Delta_{s_{i+1}}{ }^{s^{\prime}} s^{\prime}
$$

Player is only allowed to merge threads he started.

Non-stability by composition

Non-stability by composition

Non-stability by composition

Non-stability by composition

This thread is not a linear strategy.

Visibility

To workaround that, we define:
Definition

- A strategy S : A is visible when for every thread $s_{0} \rightarrow \ldots \rightarrow s_{n}$, the set $\left\{s_{0}, \ldots, s_{n}\right\}$ is a linear strategy in A.
- A strategy is innocent when it is visible and pre-innocent.

These notions have interesting consequences:

- Visibility and innocence are stable under composition
- Interactions of visible strategies are deadlock-free: $S \circledast T$ and $S \cap T$ coincide.
- Hence there is a functor from visible strategies to relations.

Non-well bracketed behaviours

There are still undefinable behaviours, related to questions/answers:

- Not answering the pending question:

- Answering twice the same question:

Well-bracketed strategies

To ban these behaviours, we introduce well-bracketing:

Definition (Well-bracketing)
A strategy $S: A$ is well-bracketed when:

1. In any thread $s_{0} \rightarrow \ldots \rightarrow s_{n}$ where s_{n} is an answer, its justifier is the last non-answered question.
2. If Player answers twice to the same question, they must live in threads started by Opponent.

A sub-category of innocent and well-bracketed strategies

 Well-bracketing is stable under composition in presence of innocence. Hence:
Theorem

The following is a SMCC:

- Objects: Negative arenas
- Morphisms from A to B:

Innocent, well-bracketed, linear strategies on $A \multimap B$ (or equivalently on $A \rightarrow B$)

Moreover, it is small enough:
Informal theorem
In this category, every strategy is definable by a PCF term up to observational equivalence.

III. Expanded strategies

Tackling non-linearity

Linearity is built-in because our strategies are subset of arenas.
To relax that: ask only for a labelling map: lbl : $S \rightarrow A$.
$\llbracket \lambda x^{\mathbb{N}} \cdot x+x \rrbracket$

$$
\mathbb{N} \longrightarrow \mathbb{N}
$$

$\llbracket \lambda f^{\mathbb{N} \rightarrow \mathbb{N} . f 3+f 3 \rrbracket . ~}$
$(\mathbb{N} \rightarrow \mathbb{N}) \longrightarrow \mathbb{N}$

At higher-order, pointers become necessary to resolve ambiguity.

Can we compose such things?

$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?

$$
\begin{array}{ll}
(\lambda x . x+x) & (\lambda f . f 3+f 3) \\
\mathbb{N} \rightarrow \mathbb{N} & (\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}
\end{array} \quad(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}
$$

Can we compose such things?

$(\lambda x \cdot x+x)$
(λ f.f $3+f$ 3)
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
q
q

Can we compose such things?
$(\lambda x \cdot x+x)$
($\lambda f . f 3+f$ 3)
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?

$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?
$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?
$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?
$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?
$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?
$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

3

Can we compose such things?
$(\lambda x \cdot x+x)$
$\mathbb{N} \rightarrow \mathbb{N}$
(λ f.f $3+f$ 3)
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

3
3

Can we compose such things?
$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

3
3
3

Can we compose such things?
$(\lambda x . x+x)$
$\mathbb{N} \rightarrow \mathbb{N}$
(λ f.f $3+f$ 3)
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

3
3
3

Can we compose such things?
$(\lambda x \cdot x+$
$\mathbb{N} \rightarrow \mathbb{N}$
(λ f.f $3+f$ 3)
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?
$(\lambda x . x+x) \quad(\lambda f . f 3+f 3)$
$\mathbb{N} \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?

Can we compose such things?
$(\lambda x \cdot x+x)$
$\mathbb{N} \rightarrow \mathbb{N}$
(λ f.f $3+f$ 3)
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

3
q
3
q
3

Can we compose such things?

Can we compose such things?
$(\lambda x \cdot x+$
$\mathbb{N} \rightarrow \mathbb{N}$
($\lambda f . f 3+f 3$)

$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

Can we compose such things?

Can we compose such things?
$(\lambda x . x+$
$\mathbb{N} \rightarrow \mathbb{N}$
($\lambda f . f 3+f$ 3)
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

q

q

Can we compose such things?

$(\lambda x \cdot x+x)$	$(\lambda f . f 3+f 3)$	
$\mathbb{N} \rightarrow \mathbb{N}$	$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$	$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$q^{2} \nabla_{i}^{q}$		
3	3	3
q	q	q
${ }^{3} \searrow_{6}^{\vdots}$	$\begin{array}{ll} 3 & \stackrel{\rightharpoonup}{2} \\ 6 \end{array}$	${ }^{3}>_{6}$
	$q^{\Delta} \iota^{q}$	q^{q}
3	$3 \checkmark$	3
q	q	q
${ }^{3} \Delta_{6}^{\vdots}$	$\begin{array}{ll} 3 & \stackrel{7}{6} \end{array}$	${ }^{3}>_{6}$

Can we compose such things?

Can we compose such things?

$(\lambda x . x+x)$	(λ f.f $3+f 3$)	
$\mathbb{N} \rightarrow \mathbb{N}$	$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$	$(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
$q^{\nabla^{2}}$	${ }_{q} \nabla^{q} \nabla^{\triangleright^{q}}$	$q_{q} \vdash^{q b^{q}}$
3	3	3
q	q	q
${ }^{3} \searrow_{6}$	$\begin{array}{ll} 3 & \begin{array}{l} 7 \\ 6 \end{array} \end{array}$	${ }^{3} \triangle_{6}$
$q^{\nabla^{2}}$	${ }_{q} \nabla^{q}$	$q \triangleright^{q}$
3	3	3
q	q	q
${ }^{3} \searrow_{6}$	$\begin{array}{lr} 3 & \stackrel{\rightharpoonup}{7} \\ 6 \end{array}$	${ }^{3}>_{6}$

The need for expanded strategies

It is as if we composed the following linear strategies:

$$
\mathbb{N} \longrightarrow \mathbb{N}
$$

$$
(\mathbb{N} \rightarrow \mathbb{N}) \longrightarrow \mathbb{N}
$$

On which arena do they live?

The expanded arena

Idea: deeply duplicate moves to accommodate non-linearity.

Definition (Expanded arena)

Let A be an arena. We define the arena! A as follows:

- (Events) index functions: pairs $(a, \alpha): a \in A$ and $\alpha: \downarrow a \rightarrow \mathbb{N}$
- (Causality) $(a, \alpha) \leq(b, \beta)$ iff $a \leq b$ and $\alpha \subseteq \beta$.
- (Labelling) Inherited from A
where $\downarrow a=\left\{a^{\prime} \in A \mid a^{\prime} \leq a\right\}$.
Down-closed subsets of ! A correspond to Boudes' thick sub-trees.

Example of expanded arena

Take $A=\mathbb{N} \multimap \mathbb{N}$. Here is a down-closed subset of $!A$ corresponding to the previous example:

Non-linear strategies on A can be seen as linear strategies on $!A$.

Example of expanded arena

Take $A=\mathbb{N} \multimap \mathbb{N}$. Here is a down-closed subset of $!A$ corresponding to the previous example:

Non-linear strategies on A can be seen as linear strategies on ! A.

Example of expanded arena

Take $A=\mathbb{N} \multimap \mathbb{N}$. Here is a down-closed subset of $!A$ corresponding to the previous example:

Non-linear strategies on A can be seen as linear strategies on $!A$.

Non-uniformity

In a strategy $S:!A$, positive copy indices are arbitrary.
\rightarrow Consider strategies on ! A up to positive copy indices $(S \simeq T)$
Problem. \simeq is not a congruence:

This strategy is not uniform: moves depend on negative indices.

A CCC of innocent strategies

There is a notion of uniform strategies on $!A$ that forbids this.

Theorem (C., Clairambault, Winskel)

The following is a cartesian closed category Inn supporting an interpretation of PCF:

- (Objects) Negative arenas
- (Morphisms from A to B) Uniform, innocent, well-bracketed linear strategies from ! A to $!B$, up to copy indices.

There is a bigger CCC of uniform and single-threaded strategies.

IV. Finite definability and intensional FULL-AbSTRACTION FOR PCF

Contextual equivalences

Contextual equivalence formalizes program indistinguishability:

- PCF terms: $t \simeq_{\text {syn }} u$ iff for all context $C[]: \mathbb{N}$,

$$
C[t] \Downarrow k \text { iff } C[u] \Downarrow k
$$

- Strategies: $S \simeq_{\text {sem }} S^{\prime}: A$ iff for all strategies $T:!A \multimap \mathbb{N}$,

$$
k \in T \odot S \text { iff } k \in T \odot S^{\prime}
$$

Intensional full abstraction: $t \simeq_{\text {syn }} u$ iff $\llbracket t \rrbracket \simeq_{\text {sem }} \llbracket u \rrbracket$.

Extensional behaviour of strategies

PCF terms can be seen as continuous functions. And strategies?

- Base types. Strategies on \mathbb{B} diverge or give a single answer. Hence:

$$
\downarrow: \operatorname{Inn}(\mathbb{B}) \cong \mathbb{B}_{\perp}: \uparrow
$$

- First-order types. The previous isomorphism lifts to a map:

$$
\begin{array}{lllr}
\downarrow: \operatorname{Inn}\left(\mathbb{B}^{k}, \mathbb{B}\right) & \rightarrow\left[\mathbb{B}_{\perp}^{k}\right. & \rightarrow & \left.\mathbb{B}_{\perp}\right] \\
S & \mapsto\left(b_{1}, \ldots, b_{n}\right) & \mapsto & \downarrow\left(S \odot\left\langle\uparrow b_{1}, \ldots, \uparrow b_{n}\right\rangle\right)
\end{array}
$$

Intensional full-abstraction entails: $\downarrow S=\downarrow S^{\prime}$ iff $S \simeq{ }_{\text {sem }} S^{\prime}$.

The two ifs are contextual equivalent sif: $\mathbb{B} \quad \multimap \mathbb{B} \multimap \mathbb{B} \multimap \mathbb{B}$ pif: \mathbb{B} $\multimap \mathbb{B} \multimap \mathbb{B} \multimap \mathbb{B}$

Both implement the same continuous function:

$$
\begin{aligned}
\mathbb{B} \times \mathbb{B} \times \mathbb{B} & \rightarrow \mathbb{B} \\
(\mathrm{tt}, x, \perp) & \mapsto x \\
(\mathrm{ff}, \perp, x) & \mapsto x \\
(\perp, \perp, \perp) & \mapsto \perp
\end{aligned}
$$

Outline of the proof of intensional full-abstraction

Theorem (C., Clairambault, Winskel)
Our concurrent interpretation of PCF inside Inn is intensionally fully-abstract.

Proof.

1. The model is sound and adequate: $t \Downarrow k$ if and only if $k \in \llbracket t \rrbracket$.
2. Hence $\llbracket t \rrbracket \simeq_{\text {sem }} \llbracket u \rrbracket$ implies $t \simeq_{\text {syn }} u$.
3. If $\llbracket t \rrbracket \bigwedge_{\text {sem }} \llbracket u \rrbracket$, they are distinguished by a finite strategy S.
4. Finite strategies can be represented by a PCF term up to contextual equivalence:

- We prove the result for first-order types
- And generalize by induction to higher-order types.

5. Hence S gives a context C dinstinguishing t and u
6. And $t \not 丸_{\text {syn }} u$.

An aside on finite strategies

Strategies on ! A are infinite but uniformity ensues its behaviour depends on a (possibly) finite part:

Definition (Reduced form)

Let $S:!A$ be a strategy. Define $r(S)$ to be the induced partial-order on $\left\{s \in S \mid \forall s_{0}^{-} \leq s, s_{0}\right.$ has copy index 0$\}$

- Reduction is faithful ensues that $r(S) \cong r\left(S^{\prime}\right)$ implies $S \simeq S^{\prime}$ (Uniformity)
- A strategy is finite when $r(S)$ is.
- $r(S)$ is exactly the P -view dag of S.

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

$$
\begin{aligned}
& \mathrm{t}=\lambda \mathrm{xy} . \\
& \text { if } \mathrm{x} \text { then if } \mathrm{y}
\end{aligned}
$$

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:


```
\(\mathrm{t}=\lambda \mathrm{xy}\).
```

$\mathrm{t}=\lambda \mathrm{xy}$.
if x then if y then

```
    if x then if y then
```


Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

```
                                    \(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}\)
```



```
\(\mathrm{t}=\lambda \mathrm{xy}\).
if x then if y then if x then \(\perp\) else \(\perp\)
```


Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:
$\mathrm{t}=\lambda \mathrm{xy}$.
$\mathrm{t}=\lambda \mathrm{xy}$.
if x then if y then if x then \perp else \perp
if x then if y then if x then \perp else \perp
else
else

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

```
                                    \(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}\)
```



```
\(\mathrm{t}=\lambda \mathrm{xy}\).
if x then if y then if x then \(\perp\) else \(\perp\)
else ff
```


Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

```
                                    \(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}\)
```



```
\(\mathrm{t}=\lambda \mathrm{xy}\).
if x then if y then if x then \(\perp\) else \(\perp\)
else ff
else
```


Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:
$\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$


```
t = \lambdaxy.
    if x then if y then if x then }\perp\mathrm{ else }
        else ff
    else if y
```


Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:

$\mathrm{t}=\lambda \mathrm{xy}$.
if x then if y then if x then \perp else \perp
else ff
else if y then \perp

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:
$\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$


```
\(\mathrm{t}=\lambda \mathrm{xy}\).
    if x then if y then if x then \(\perp\) else \(\perp\)
        else ff
```

 else if y then \(\perp\) else

Finite definability for the first-order

A typical strategy on $!(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$ looks like:
$\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$


```
\(\mathrm{t}=\lambda \mathrm{xy}\).
    if x then if y then if x then \(\perp\) else \(\perp\)
        else ff
```

 else if y then \(\perp\) else ff
 Finite definability at higher-order What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?

$$
(A \quad \rightarrow \quad \mathbb{B}) \rightarrow \mathbb{B}
$$

q

Finite definability at higher-order What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?

$$
\begin{aligned}
& (A \quad \rightarrow \quad \mathbb{B}) \quad \rightarrow \quad \mathbb{B} \\
& q \stackrel{q}{q}
\end{aligned}
$$

Finite definability at higher-order What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?
$(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

Finite definability at higher-order What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?

$$
(A \quad \rightarrow \quad \mathbb{B}) \quad \rightarrow \quad \mathbb{B}
$$

Finite definability at higher-order What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?

$$
(A \quad \rightarrow \quad \mathbb{B}) \quad \rightarrow \quad \mathbb{B}
$$

Finite definability at higher-order What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?

$$
(A \quad \rightarrow \quad \mathbb{B} \quad) \quad \rightarrow \quad \mathbb{B}
$$

- This gives a strategy $S_{f}:!(\mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B})$.

Finite definability at higher-order What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?
$(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

- This gives a strategy $S_{f}:!(\mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B})$.

Finite definability at higher-order
What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?
$(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

- This gives a strategy $S_{f}:!(\mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B})$.

Finite definability at higher-order
What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?
$(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

- This gives a strategy $S_{f}:!(\mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B})$.

Finite definability at higher-order
What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?
$(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

- This gives a strategy $S_{f}:!(\mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B})$.
- This gives strategies $S_{i}:!((A \rightarrow \mathbb{B}) \rightarrow A)$.

Finite definability at higher-order
What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?
$(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

- This gives a strategy $S_{f}:!(\mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B})$.
- This gives strategies $S_{i}:!((A \rightarrow \mathbb{B}) \rightarrow A)$.
- Theorem. $S=\lambda g^{A \rightarrow \mathbb{B}} \cdot S_{f}\left(S_{1} g\right)\left(S_{2} g\right)\left(S_{3} g\right)$

Finite definability at higher-order

What can happen on $(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$?
$(A \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

- This gives a strategy $S_{f}:!(\mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B})$.
- This gives strategies $S_{i}:!((A \rightarrow \mathbb{B}) \rightarrow A)$.
- Theorem. $S=\lambda g^{A \rightarrow \mathbb{B}} . S_{f}\left(S_{1} g\right)\left(S_{2} g\right)\left(S_{3} g\right)$
- The S_{i} are smaller and S_{f} is first-order.

Conclusion

Summary.

- A compositional framework for concurrent strategies
- A CCC of innocent strategies supporting a concurrent interpretation PCF.
- A result of intensional full-abstraction.

Existing extensions / Work in progress.

- Disjunctive causes. There is a fully-abstract model for PCF+por (collapse to domains)
- Non-determinism. There is a CCC of concurrent non-deterministic strategies supporting languages like IPA.
- Must-equivalence. Hiding can be modified to remember divergence and obtain a model for must-equivalences.
- Weak memory models. Design models of shared memory concurrency that features weak memory behaviours.

