Weak memory models using event structures

Simon Castellan¹

¹LIP, ENS Lyon

November 26th, 2016 Dagstuhl Seminar

A simple weak memory model: TSO

In this talk, we will focus on a simple weak memory model: TSO. **Store buffering.** (can observe r = s = 0 on TSO but not SC):

 $\begin{array}{c|c} x, y \text{ initialized to } 0 \\ x := 1 & y := 1 \\ r \leftarrow y & s \leftarrow x \end{array}$

Implementation: thread-local write buffers.

becomes
$$\underbrace{ \underbrace{\langle t_1 \parallel \ldots \parallel t_n \mathbb{Q}(\mu : \mathcal{V} \to \mathbb{N}) \rangle}_{\text{States of a SC machine}}}_{\text{State of a TSO machine}} t_n : \kappa_n \mathbb{Q}\mu$$

Some transition rules:

$$\begin{array}{ll} (\textit{Write}) & \langle (x := k; t: b) @\mu \rangle \rightarrow \langle (t: b++[(x,k)]) @\mu \rangle \\ (\textit{Commit}) & \langle (t: [(x,k)]++b) @\mu \rangle \rightarrow \langle (t:b) @\mu [x \leftarrow k] \rangle \end{array}$$

This talk

A semantics that is

- denotational: executions computed by induction
 - the semantics is thus compositional
- compact: based on event structures
 - no combinatorial explosion
- extensible: inspired from game semantics
 - ▶ it is easy to add loops, control operators, higher-order, ...

Outline of the talk:

- 1. A semantics warm-up: compute the SC semantics using *traces*.
- 2. Getting back the **causality**.
- 3. An example: a model for **TSO**.
- 4. A game semantics aparté at the end (if time allows)

I. A denotational semantics for SC

With traces of originality

Syntax precedes semantics

Our very simple programming language:

$$e, e' ::= \{ Expressions \} \\ k \in \mathbb{N} \mid r \in \mathcal{R} \mid e + e' \\ \iota ::= \{ Instructions \} \\ \mid a := e \qquad (Write on a variable) \\ \mid r \leftarrow a \qquad (Read on a variable) \\ t ::= \{ Threads \} \\ \mid \iota; \dots; \iota \\ p ::= \{ Programs \} \\ t_1 \parallel \dots \parallel t_n \end{cases}$$

In real life: conditionals and barriers.

Denotational semantics

Goal: compute $\llbracket t \rrbracket \in E$ where *E* is some space of denotations.

Our space here: langages of traces.

$$\begin{split} \Sigma_a &= \mathcal{V} \times \{ \mathtt{R}, \mathtt{W} \} & (\text{Abstract memory event}) \\ \Sigma_c &= \mathbb{N} \times \Sigma_a \times \mathbb{N} & (\text{Concrete memory event}) \\ E &= \mathscr{P}(\Sigma_c^*) \end{split}$$

Notations: $(\tau : \mathbb{R}_{x=k})$, $(\tau : \mathbb{W}_{x:=k})$. $(\tau: \text{thread-id})$

Two steps:

- Thread semantics [[t]]^O: shared variables are considered volatile: [[x := 1; r ← x]]^O does not guarantee to read 1 in r.
- Closed semantics: once [[t]]^O is calculated for the whole program, we restrict the scope of the variable [[x := 1; r ← x]] reads 1 in r.

Semantics of threads. Parametrized over $\rho : \mathcal{R} \to \mathbb{N}$ and $\tau \in \mathbb{N}$.

(Writes)
$$\llbracket x := e; t \rrbracket(\rho, \tau) = (\tau : \mathbb{W}_{x:=\rho(e)}) \cdot \llbracket t \rrbracket \rho$$

(Reads) $\llbracket r \leftarrow x; t \rrbracket(\rho, \tau) = \bigcup_{i \in \mathbb{N}} (\tau : \mathbb{R}_{x=i} \cdot \llbracket t \rrbracket(\rho[r \leftarrow i], \tau))$

Semantics of threads. Parametrized over $\rho : \mathcal{R} \to \mathbb{N}$ and $\tau \in \mathbb{N}$.

(Writes)
$$\llbracket x := e; t \rrbracket(\rho, \tau) = (\tau : \mathbb{W}_{x:=\rho(e)}) \cdot \llbracket t \rrbracket \rho$$

(Reads) $\llbracket r \leftarrow x; t \rrbracket(\rho, \tau) = \bigcup_{i \in \mathbb{N}} (\tau : \mathbb{R}_{x=i} \cdot \llbracket t \rrbracket(\rho[r \leftarrow i], \tau))$

Semantics of programs. Obtained by interleaving (\circledast) :

$$\llbracket t_1 \parallel \ldots \parallel t_n \rrbracket = \llbracket t_1 \rrbracket (\emptyset, 1) \circledast \ldots \circledast \llbracket t_n \rrbracket (\emptyset, n)$$

Semantics of threads. Parametrized over $\rho : \mathcal{R} \to \mathbb{N}$ and $\tau \in \mathbb{N}$.

(Writes)
$$\llbracket x := e; t \rrbracket(\rho, \tau) = (\tau : \mathbb{W}_{x:=\rho(e)}) \cdot \llbracket t \rrbracket \rho$$

(Reads) $\llbracket r \leftarrow x; t \rrbracket(\rho, \tau) = \bigcup_{i \in \mathbb{N}} (\tau : \mathbb{R}_{x=i} \cdot \llbracket t \rrbracket(\rho[r \leftarrow i], \tau))$

Semantics of programs. Obtained by interleaving (\circledast) :

$$\llbracket t_1 \parallel \ldots \parallel t_n \rrbracket = \llbracket t_1 \rrbracket (\emptyset, 1) \circledast \ldots \circledast \llbracket t_n \rrbracket (\emptyset, n)$$

Example. Define $p = (x := 1; y \leftarrow r \parallel y := 1; x \leftarrow s)$ $\bigvee_{x:=1} \cdot \bigvee_{y:=1} \cdot \bigotimes_{y=3} \cdot \bigotimes_{x=2} \in \llbracket p \rrbracket$ $\bigvee_{x:=1} \bigcup_{y=0} \cdot \bigvee_{x:=1} \cdot \bigvee_{y:=1} \notin \llbracket p \rrbracket.$

Closed semantics

Obtained by eliminating "inconsistent" traces (eg. $\mathtt{W}_{\!\scriptscriptstyle X:=2} \cdot \mathtt{R}_{\!\scriptscriptstyle X=3})$

Linear memory model. A language of "consistent" traces:

$$egin{aligned} \mathcal{M}(\mu:\mathcal{V} o\mathbb{N}) &::= \epsilon \ &\mid au: \mathtt{R}_{ imes=\mu(imes)}\cdot\mathcal{M}(\mu) \ &\mid au: \mathtt{W}_{ imes:=k}\cdot\mathcal{M}(\mu[imes\leftarrow k]) \ &\mathcal{M}::=\mathcal{M}(imes\mapsto 0) \end{aligned}$$

Closed semantics: $\llbracket p \rrbracket = \llbracket p \rrbracket^O \cap M$.

Example. Write $p = (x := 1; r \leftarrow y) \parallel (y := 2; s \leftarrow x)$

• every trace of $[\![p]\!]$ ends with $R_{x=1}$ or a $R_{y=2}$.

Summary

Advantages.

- Easy to define semantics, by induction on programs.
- By making *M* more complex, complex cache schemes can be handled

Drawbacks.

- Combinatorial explosion due to interleavings.
- How to model reordering of instructions?

Towards partial-orders.

- Because of reorderings, threads are not totally ordered
- Our goal: compute fine precisely dependencies between the instructions, given an architecture.

II. EVENT STRUCTURES

Raiders of the lost causality

Idea: thread semantics should be a set of partial-orders.

Term:

$$x := 1; y := 1;$$

$$r \leftarrow x; s \leftarrow y;$$

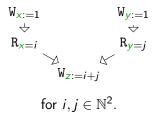
$$z := s + t$$

Idea: thread semantics should be a set of partial-orders.

Dependencies (depends on the architecture):

Idea: thread semantics should be a set of partial-orders.

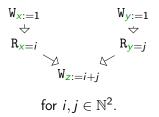
Executions (depends on the architecture):



- traces on Σ_c becomes *partially ordered multisets* over Σ_c (pomsets)
- $[t]^O$ becomes a set of such *pomsets*.

Idea: thread semantics should be a set of partial-orders.

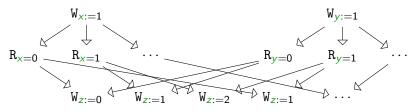
Executions (depends on the architecture):



- traces on Σ_c becomes *partially ordered multisets* over Σ_c (pomsets)
- $[t]^O$ becomes a set of such *pomsets*.
- Problem: lots of redundancies in the pomsets..

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For instance:

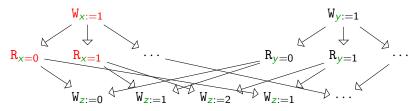


Which sets of events w are (partial) executions?

• w must be downward-closed for \rightarrow

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For instance:

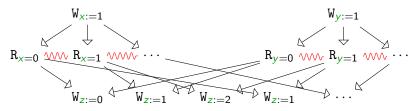


Which sets of events w are (partial) executions?

- w must be downward-closed for \rightarrow
- ▶ and ...? $\{W_{x:=1}, R_{x=0}, R_{x=1}\}$ cannot be a valid execution.

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For instance:



Which sets of events w are (partial) executions?

- w must be downward-closed for \rightarrow
- ▶ and ...? { $W_{x:=1}$, $R_{x=0}$, $R_{x=1}$ } cannot be a valid execution.

 \Rightarrow Need more structure than a partial-order: **conflicts**.

Definition (Event structures)

A set of event E with:

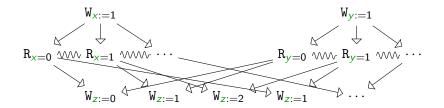
- A notion of **causality** represented by a partial order \leq_E
- A notion of **conflict** represented by a relation \sim_E
- A labelling $I : E \to \Sigma$.

(+ axioms)

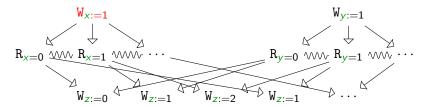
Definition (Configuration or partial execution) A configuration of E is a subset w of E:

- downward-closed: $e \leq e' \in w \Rightarrow e \in w$.
- that does not contain two conflicting events

On the example:



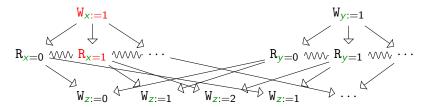
On the example:



We have the configuration:

 $W_{x:=1}$

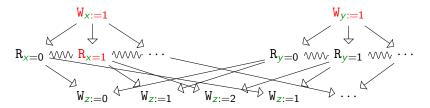
On the example:



We have the configuration:

$$\mathbb{W}_{x:=1}$$
 \downarrow
 $\mathbb{R}_{x=1}$

On the example:



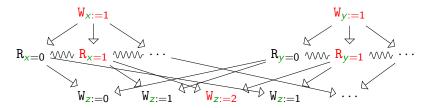
We have the configuration:

On the example:

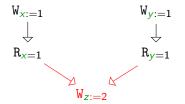


We have the configuration:

On the example:



We have the configuration:



III. DESIGNING A SEMANTICS WITH EVENT STRUCTURES

Dessine-moi une structure d'événements

A model for the TSO architecture

We now repeat the story using event structures for TSO.

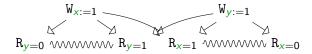
Two steps:

- ► Open semantics: [[t]]^O is an event structure
- Closed semantics: $\llbracket t \rrbracket = \llbracket t \rrbracket^O \land \mathscr{M}_{TSO}$

Store buffering:

 $\begin{array}{c|c} x, y \text{ initialized to } 0 \\ x := 1 \\ r \leftarrow y \end{array} \begin{vmatrix} y & := 1 \\ s \leftarrow x \end{vmatrix}$

becomes:



By induction as before, generalizing operations to event structures.

Threads: (omitting thread-ids)

$$\mathcal{T}\llbracket x := e; t \rrbracket \rho = \mathbb{W}_{x:=\rho(e)} \cdot \llbracket t \rrbracket \rho$$

$$\overset{\mathbb{W}_{x:=\rho(e)}}{\swarrow} \underbrace{\mathbb{W}_{x:=\rho(e)}}_{\llbracket t \rrbracket \rho} \xrightarrow{\mathbb{W}_{x:=\rho(e)}} \mathbb{W}_{x:=\rho(e)} \xrightarrow{\mathbb{W}_{x:=\rho(e)}} \mathbb{W}_{x:=\rho(e)}$$

Programs:

$$\mathscr{T}\llbracket t_1 \parallel \ldots \parallel t_n \rrbracket = \llbracket t_1 \rrbracket (\emptyset, 1) \parallel \ldots \parallel \llbracket t_n \rrbracket (\emptyset, n)$$
$$\llbracket t_1 \rrbracket \emptyset \qquad \ldots \qquad \llbracket t_n \rrbracket \emptyset$$

Consistent memory behaviours

- A Σ -labelled partial order is TSO-consistent when it satisfies:
 - 1. Write serialization. Writes on a variable are totally ordered.

$$\begin{array}{l} \mathbb{W}_{X:=1} \xrightarrow{} \mathbb{W}_{X:=3} \xrightarrow{} \mathbb{W}_{X:=4} \\ \mathbb{W}_{Y:=2} \xrightarrow{} \mathbb{W}_{Y:=0} \end{array}$$

Coherent reading. For e = R_{x=k} ∈ q, W_{x:=k} is the maximal event of {W_{x:=n} ∈ q | W_{x:=n} ≤ e}

$$\begin{matrix} & \mathsf{W}_{y:=2} \\ & \mathsf{W}_{x:=2} \mathrel{\Rightarrow} \mathsf{W}_{x:=3} \mathrel{\Rightarrow} \mathsf{R}_{y=0} \mathrel{\Rightarrow} \mathsf{R}_{x=3} \end{matrix}$$

- Writes propagation. For all writes w ∈ q, and for all incomparable reads r, r' ∈ q in a different thread than w, (w ≤ r) iff (w ≤ r')
- Thread sequentialization Two events from the same thread are comparable [unless it is an independent read & write pair].

\mathscr{M}_{TSO} and the synchronized product

Theorem

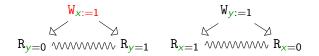
There exists an event structure \mathcal{M}_{TSO} whose configurations are exactly consistent TSO-execution.

(Relies on TSO execution being closed under "prefix")

How to combine $\mathscr{T}[[t]]$ and \mathscr{M}_{TSO} ? Using the synchronized product:

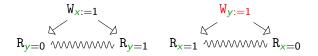
$$\llbracket t \rrbracket = \mathscr{T}\llbracket t \rrbracket \wedge \mathscr{M}_{\mathsf{TSO}}.$$

$$p = \begin{array}{c} x := 1 \\ r \leftarrow y \end{array} \left| \begin{array}{c} y := 1 \\ s \leftarrow x \end{array} \right|$$



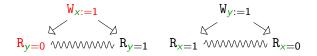
(Thread semantics)

$$p = \begin{array}{c} x := 1 \\ r \leftarrow y \end{array} \left| \begin{array}{c} y := 1 \\ s \leftarrow x \end{array} \right|$$



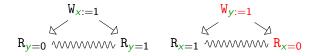
(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)

$$p = \begin{array}{c} x := 1 \\ r \leftarrow y \end{array} \left| \begin{array}{c} y := 1 \\ s \leftarrow x \end{array} \right|$$



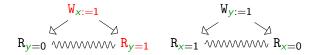
(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)

$$p = \begin{array}{c} x := 1 \\ r \leftarrow y \end{array} \left| \begin{array}{c} y := 1 \\ s \leftarrow x \end{array} \right|$$



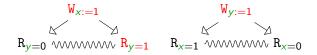
(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)

$$p = \begin{array}{c} x := 1 \\ r \leftarrow y \end{array} \left| \begin{array}{c} y := 1 \\ s \leftarrow x \end{array} \right|$$

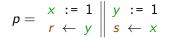


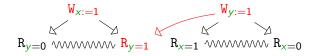
(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)

$$p = \begin{array}{c} x := 1 \\ r \leftarrow y \end{array} \left| \begin{array}{c} y := 1 \\ s \leftarrow x \end{array} \right|$$

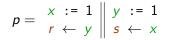


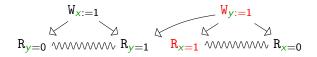
(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)



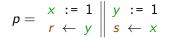


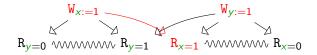
(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)



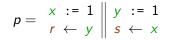


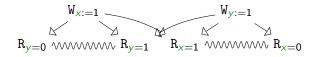
(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)



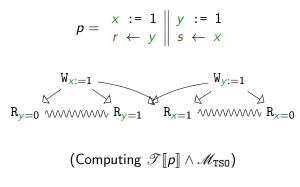


(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)





(Computing $\mathscr{T}[\![p]\!] \land \mathscr{M}_{TSO}$)



We can observe $r = 0 \land s = 0$.

Link with operational semantics

A trace of [t] is a linearization of a configuration of [t]

Theorem

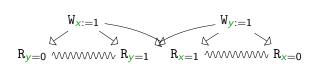
The traces of [t] are in one-to-one correspondance between the usual operational semantics for TSO.

However, there are no *explicit* buffers in our semantics.

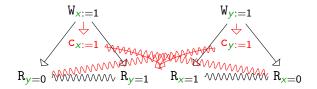
Implicitly represented by concurrency: If $R_{x=k}$ is concurrent to $W_{x:=k'}$, the read does not see the write.

Implicit vs. explicit

Our model is *implicit*: no internal events *Implicit semantics of* **SB**.



Explicit semantics of SB.



Reordering

In TSO, it is sound to reorder a write followed by an independent read.

This changes the *thread semantics*. $\mathscr{T}[SB]^O$ becomes:

 $\mathtt{W}_{\mathtt{X}:=1} \quad \mathtt{R}_{\mathtt{Y}=0} \mathrel{\scriptstyle{\wedge}} \mathtt{R}_{\mathtt{Y}=1} \quad \mathtt{W}_{\mathtt{Y}:=1} \quad \mathtt{R}_{\mathtt{X}=0} \mathrel{\scriptstyle{\wedge}} \mathtt{R}_{\mathtt{X}=1}$

IV. The game semantics behind that

Finding nails for a hammer

A quick overview of game semantics

Game semantics: *interactive* semantics for higher-order computation.

- Types \rightarrow Games (set of moves + rules)
- ▶ Programs → Rule-preserving strategies (set of "valid plays") Objective: use game semantics to reformulate thread semantics.

Instead of

$$\llbracket r \leftarrow x; t \rrbracket \rho = \text{complicated surgery on } \llbracket t \rrbracket \rho$$

replace it by:

$$[\![r \ \leftarrow \ x;t]\!]\rho = \texttt{let} \odot \langle x, [\![\lambda r.t]\!]\rangle$$

where:

- ► ⊙: strategy composition
- Iet is a carefully-written strategy.

Usually, reads are interpreted by a strategy read : var \rightarrow unit:

 $\texttt{read}: \quad (x:\texttt{var}) \rightarrow \texttt{int}$

Usually, reads are interpreted by a strategy read : var \rightarrow unit:

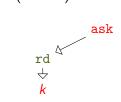
```
read: (x:var) \rightarrow int
```

Usually, reads are interpreted by a strategy read : var \rightarrow unit:

read: $(x: var) \rightarrow int$

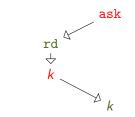
Usually, reads are interpreted by a strategy read : var \rightarrow unit:

read: $(x: var) \rightarrow int$



Usually, reads are interpreted by a strategy read : var \rightarrow unit:

 $\texttt{read}: (x:\texttt{var}) \to \texttt{int}$



Usually, reads are interpreted by a strategy read : var \rightarrow unit:

read: $(x: var) \rightarrow int$ ask rd \downarrow k kk

Problem. No access to the continuation to break causalities.

Here let has type var ightarrow (int ightarrow int) ightarrow unit. For instance:

```
let read x f =
let z = !x in f z
```

$$x: \texttt{var}
ightarrow f: (\texttt{int}
ightarrow \texttt{unit})
ightarrow \texttt{unit}$$

Here let has type var ightarrow (int
ightarrow int)
ightarrow unit. For instance:

let read x f =
let z =
$$!x$$
 in f z

This gives the following strategy:

$$x: \texttt{var} \to f: (\texttt{int} \to \texttt{unit}) \to \texttt{unit}$$

run

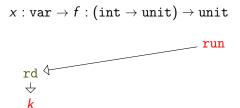
Here let has type var \rightarrow (int \rightarrow int) \rightarrow unit. For instance:

let read x f =
let
$$z = !x$$
 in f z

$$x: \mathtt{var} o f: (\mathtt{int} o \mathtt{unit}) o \mathtt{unit}$$

Here let has type var \rightarrow (int \rightarrow int) \rightarrow unit. For instance:

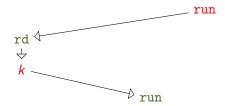
let read x f =
let
$$z = !x$$
 in f z



Here let has type var \rightarrow (int \rightarrow int) \rightarrow unit. For instance:

let read x f =
let
$$z = !x$$
 in f z

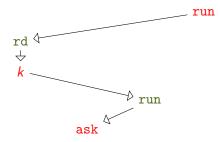
$$x: \mathtt{var} o f: (\mathtt{int} o \mathtt{unit}) o \mathtt{unit}$$



Here let has type var \rightarrow (int \rightarrow int) \rightarrow unit. For instance:

let read x f =
let
$$z = !x$$
 in f z

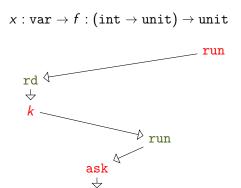
$$x: \mathtt{var} o f: (\mathtt{int} o \mathtt{unit}) o \mathtt{unit}$$



Here let has type var ightarrow (int
ightarrow int)
ightarrow unit. For instance:

let read x f =
let z =
$$!x$$
 in f z

This gives the following strategy:

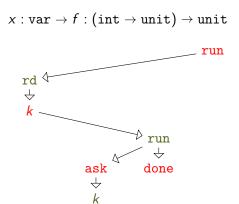


Weak memory models using event structures · Simon Castellan

k

Here let has type var \rightarrow (int \rightarrow int) \rightarrow unit. For instance:

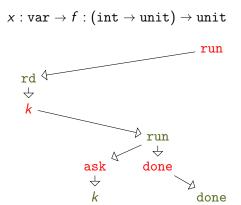
let read x f =
let
$$z = !x$$
 in f z



Here let has type var ightarrow (int ightarrow int) ightarrow unit. For instance:

let read x f =
let
$$z = !x$$
 in f z

This gives the following strategy:



This type support more interesting definitions of let:

$$x: \mathtt{var}
ightarrow f: (\mathtt{int}
ightarrow \mathtt{unit})
ightarrow \mathtt{unit}$$

This type support more interesting definitions of let:

This gives the following strategy:

$$x: \mathtt{var} o f: (\mathtt{int} o \mathtt{unit}) o \mathtt{unit}$$

run

This type support more interesting definitions of let:

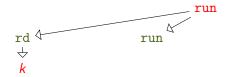
$$x: \texttt{var} o f: (\texttt{int} o \texttt{unit}) o \texttt{unit}$$

This type support more interesting definitions of let:

$$x: \texttt{var} o f: (\texttt{int} o \texttt{unit}) o \texttt{unit}$$

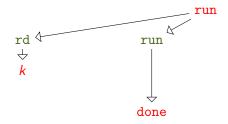
This type support more interesting definitions of let:

$$x: \texttt{var} o f: (\texttt{int} o \texttt{unit}) o \texttt{unit}$$



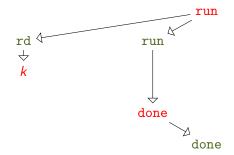
This type support more interesting definitions of let:

$$x: \texttt{var} o f: (\texttt{int} o \texttt{unit}) o \texttt{unit}$$



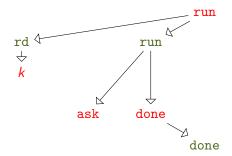
This type support more interesting definitions of let:

$$x: \texttt{var} o f: (\texttt{int} o \texttt{unit}) o \texttt{unit}$$



This type support more interesting definitions of let:

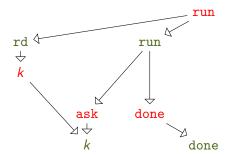
$$x: \texttt{var} o f: (\texttt{int} o \texttt{unit}) o \texttt{unit}$$



This type support more interesting definitions of let:

This gives the following strategy:

$$x: \texttt{var} o f: (\texttt{int} o \texttt{unit}) o \texttt{unit}$$



Consider $t(x, y) = \text{let } x (\lambda n. \text{ write } y \ 1; n+1)$:

Consider
$$t(x, y) = \text{let } x \ (\lambda n. \text{ write } y \ 1; n+1)$$
:

 $x: \texttt{var} \to y: \texttt{var} \longrightarrow \texttt{int}$

ask

Consider
$$t(x, y) = \text{let } x \ (\lambda n. \text{ write } y \ 1; n+1)$$
:

Consider
$$t(x, y) = \text{let } x \ (\lambda n. \text{ write } y \ 1; n+1)$$
:

Consider
$$t(x, y) = \text{let } x \ (\lambda n. \text{ write } y \ 1; n+1)$$
:

Consider
$$t(x, y) = \text{let } x \ (\lambda n. \text{ write } y \ 1; n+1)$$
:

 $x: \texttt{var} \to y: \texttt{var} \longrightarrow \texttt{int}$

Consider
$$t(x, y) = \text{let } x \ (\lambda n. \text{ write } y \ 1; n+1)$$
:

A new model

Thread semantics. We use strategies let and write:

$$\begin{aligned} \mathscr{T}\llbracket \det x \, f \rrbracket &= \mathsf{let} \odot \langle x, f \rangle \\ \mathscr{T}\llbracket x := k \rrbracket &= \mathsf{write} \odot \langle x, k \rangle \end{aligned}$$

No more ad-hoc inductive constructions: all is contained in the strategies let and write. From $\Gamma \vdash t : A$, we get $\mathscr{T}[\![t]\!] : [\![\Gamma]\!] \Rightarrow [\![A]\!]$.

Storage semantics. \mathcal{M}_{TS0} induces a strategy on \mathfrak{m}_{TS0} : $\llbracket var \rrbracket^n$.

Semantics. For $x_1 : var, \ldots, x_n : var \vdash t : unit:$

$$\llbracket t \rrbracket = \mathscr{T}\llbracket t \rrbracket \odot \mathfrak{m}_{\mathsf{TSO}}$$

Conclusion

Summary.

- We defined an *denotational* and *extensible* interpretation of concurrent programs in terms of *event structures*.
- By using the higher-order power of strategies, the behaviour of reads, writes, and the memory are all specified by one event structure.
- Because of the game semantics, it scales to function calls, control features, etc.

To go further.

- Look at explicit models for weaker archtectures (eg. POWER/ARM)
- Implicit models for those architecture will need read-from justifications (introduced by Jeffrey & Riley)
- Software models? (the model is very expressive)