
Weak memory models using event structures

Simon Castellan1

1LIP, ENS Lyon

November 26th, 2016
Dagstuhl Seminar

A simple weak memory model: TSO
In this talk, we will focus on a simple weak memory model: TSO.
Store buffering. (can observe r = s = 0 on TSO but not SC):

x , y initialized to 0
x := 1 y := 1
r ← y s ← x

Implementation: thread-local write buffers.

〈t1 ‖ . . . ‖ tn@(µ : V → N)〉︸ ︷︷ ︸
States of a SC machine

becomes 〈t1 : κ1 ∈ (V × N)∗ ‖ . . . ‖ tn : κn@µ〉︸ ︷︷ ︸
State of a TSO machine

Some transition rules:

(Write) 〈(x := k ; t : b)@µ〉 → 〈(t : b++[(x , k)])@µ〉
(Commit) 〈(t : [(x , k)]++b)@µ〉 → 〈(t : b)@µ[x ← k]〉

Weak memory models using event structures · Simon Castellan 2 / 31

This talk
A semantics that is

I denotational: executions computed by induction
I the semantics is thus compositional

I compact: based on event structures
I no combinatorial explosion

I extensible: inspired from game semantics
I it is easy to add loops, control operators, higher-order, . . .

Outline of the talk:
1. A semantics warm-up: compute the SC semantics using

traces.
2. Getting back the causality.
3. An example: a model for TSO.
4. A game semantics aparté at the end (if time allows)

Weak memory models using event structures · Simon Castellan 3 / 31

I. A denotational semantics for SC

With traces of originality

Weak memory models using event structures · Simon Castellan 4 / 31

Syntax precedes semantics

Our very simple programming language:

e, e ′ ::= { Expressions }
k ∈ N | r ∈ R | e + e ′

ι ::= { Instructions }
| a := e (Write on a variable)
| r ← a (Read on a variable)

t ::= { Threads }
| ι; . . . ; ι

p ::= { Programs }
t1 ‖ . . . ‖ tn

In real life: conditionals and barriers.

Weak memory models using event structures · Simon Castellan 5 / 31

Denotational semantics
Goal: compute JtK ∈ E where E is some space of denotations.

Our space here: langages of traces.

Σa = V × {R, W} (Abstract memory event)
Σc = N× Σa × N (Concrete memory event)
E = P(Σc

∗)

Notations: (τ : Rx=k), (τ : Wx :=k). (τ : thread-id)

Two steps:

1. Thread semantics JtKO : shared variables are considered
volatile: Jx := 1; r ← xKO does not guarantee to read 1 in r .

2. Closed semantics: once JtKO is calculated for the whole
program, we restrict the scope of the variable
Jx := 1; r ← xK reads 1 in r .

Weak memory models using event structures · Simon Castellan 6 / 31

Thread semantics

Semantics of threads. Parametrized over ρ : R → N and τ ∈ N.

(Writes) Jx := e; tK(ρ, τ) = (τ : Wx :=ρ(e)) · JtKρ

(Reads) Jr ← x ; tK(ρ, τ) =
⋃
i∈N

(τ : Rx=i · JtK(ρ[r ← i], τ))

Semantics of programs. Obtained by interleaving (~):

Jt1 ‖ . . . ‖ tnK = Jt1K(∅, 1) ~ . . .~ JtnK(∅, n)

Example. Define p = (x := 1; y ← r ‖ y := 1; x ← s)

I Wx :=1 · Wy :=1 · Ry=3 · Rx=2 ∈ JpK
I but Rx=0 · Ry=0 · Wx :=1 · Wy :=1 6∈ JpK.

Weak memory models using event structures · Simon Castellan 7 / 31

Thread semantics

Semantics of threads. Parametrized over ρ : R → N and τ ∈ N.

(Writes) Jx := e; tK(ρ, τ) = (τ : Wx :=ρ(e)) · JtKρ

(Reads) Jr ← x ; tK(ρ, τ) =
⋃
i∈N

(τ : Rx=i · JtK(ρ[r ← i], τ))

Semantics of programs. Obtained by interleaving (~):

Jt1 ‖ . . . ‖ tnK = Jt1K(∅, 1) ~ . . .~ JtnK(∅, n)

Example. Define p = (x := 1; y ← r ‖ y := 1; x ← s)

I Wx :=1 · Wy :=1 · Ry=3 · Rx=2 ∈ JpK
I but Rx=0 · Ry=0 · Wx :=1 · Wy :=1 6∈ JpK.

Weak memory models using event structures · Simon Castellan 7 / 31

Thread semantics

Semantics of threads. Parametrized over ρ : R → N and τ ∈ N.

(Writes) Jx := e; tK(ρ, τ) = (τ : Wx :=ρ(e)) · JtKρ

(Reads) Jr ← x ; tK(ρ, τ) =
⋃
i∈N

(τ : Rx=i · JtK(ρ[r ← i], τ))

Semantics of programs. Obtained by interleaving (~):

Jt1 ‖ . . . ‖ tnK = Jt1K(∅, 1) ~ . . .~ JtnK(∅, n)

Example. Define p = (x := 1; y ← r ‖ y := 1; x ← s)

I Wx :=1 · Wy :=1 · Ry=3 · Rx=2 ∈ JpK
I but Rx=0 · Ry=0 · Wx :=1 · Wy :=1 6∈ JpK.

Weak memory models using event structures · Simon Castellan 7 / 31

Closed semantics

Obtained by eliminating “inconsistent” traces (eg. Wx :=2 · Rx=3)

Linear memory model. A language of “consistent” traces:

M(µ : V → N) ::= ε

| τ : Rx=µ(x) ·M(µ)

| τ : Wx :=k ·M(µ[x ← k])

M ::= M(x 7→ 0)

Closed semantics: JpK = JpKO ∩M.

Example. Write p = (x := 1; r ← y) ‖ (y := 2; s ← x)

I every trace of JpK ends with Rx=1 or a Ry=2.

Weak memory models using event structures · Simon Castellan 8 / 31

Summary

Advantages.
I Easy to define semantics, by induction on programs.
I By making M more complex, complex cache schemes can be

handled

Drawbacks.
I Combinatorial explosion due to interleavings.
I How to model reordering of instructions?

Towards partial-orders.
I Because of reorderings, threads are not totally ordered
I Our goal: compute fine precisely dependencies between the

instructions, given an architecture.

Weak memory models using event structures · Simon Castellan 9 / 31

II. Event structures

Raiders of the lost causality

Weak memory models using event structures · Simon Castellan 10 / 31

Replacing traces by partial-orders
Idea: thread semantics should be a set of partial-orders.

Term:

x := 1; y := 1;

r ← x ; s ← y ;

z := s + t

I traces on Σc becomes partially ordered multisets over Σc

(pomsets)
I JtKO becomes a set of such pomsets.
I Problem: lots of redundancies in the pomsets..

Weak memory models using event structures · Simon Castellan 11 / 31

Replacing traces by partial-orders
Idea: thread semantics should be a set of partial-orders.

Dependencies (depends on the architecture):

x := 1 y := 1

r ← x s ← y

z := r + s

I traces on Σc becomes partially ordered multisets over Σc

(pomsets)
I JtKO becomes a set of such pomsets.
I Problem: lots of redundancies in the pomsets..

Weak memory models using event structures · Simon Castellan 11 / 31

Replacing traces by partial-orders
Idea: thread semantics should be a set of partial-orders.

Executions (depends on the architecture):

Wx :=1 Wy :=1

Rx=i Ry=j

Wz:=i+j

for i , j ∈ N2.

I traces on Σc becomes partially ordered multisets over Σc

(pomsets)
I JtKO becomes a set of such pomsets.

I Problem: lots of redundancies in the pomsets..

Weak memory models using event structures · Simon Castellan 11 / 31

Replacing traces by partial-orders
Idea: thread semantics should be a set of partial-orders.

Executions (depends on the architecture):

Wx :=1 Wy :=1

Rx=i Ry=j

Wz:=i+j

for i , j ∈ N2.

I traces on Σc becomes partially ordered multisets over Σc

(pomsets)
I JtKO becomes a set of such pomsets.
I Problem: lots of redundancies in the pomsets..

Weak memory models using event structures · Simon Castellan 11 / 31

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For
instance:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

Which sets of events w are (partial) executions?
I w must be downward-closed for _

I and . . . ? {Wx :=1, Rx=0, Rx=1} cannot be a valid execution.

⇒ Need more structure than a partial-order: conflicts.

Weak memory models using event structures · Simon Castellan 12 / 31

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For
instance:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

Which sets of events w are (partial) executions?
I w must be downward-closed for _
I and . . . ? {Wx :=1, Rx=0, Rx=1} cannot be a valid execution.

⇒ Need more structure than a partial-order: conflicts.

Weak memory models using event structures · Simon Castellan 12 / 31

Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For
instance:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

Which sets of events w are (partial) executions?
I w must be downward-closed for _
I and . . . ? {Wx :=1, Rx=0, Rx=1} cannot be a valid execution.

⇒ Need more structure than a partial-order: conflicts.

Weak memory models using event structures · Simon Castellan 12 / 31

Event structures save the day

Definition (Event structures)
A set of event E with:

I A notion of causality represented by a partial order ≤E

I A notion of conflict represented by a relation E

I A labelling l : E → Σ.
(+ axioms)

Definition (Configuration or partial execution)
A configuration of E is a subset w of E :

I downward-closed: e ≤ e ′ ∈ w ⇒ e ∈ w .
I that does not contain two conflicting events

Weak memory models using event structures · Simon Castellan 13 / 31

Event structures save the day
On the example:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

We have the configuration:

Wx :=1

Wy :=1

Rx=1 Ry=1

Wz:=2

Weak memory models using event structures · Simon Castellan 14 / 31

Event structures save the day
On the example:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

We have the configuration:

Wx :=1

Wy :=1

Rx=1 Ry=1

Wz:=2

Weak memory models using event structures · Simon Castellan 14 / 31

Event structures save the day
On the example:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

We have the configuration:

Wx :=1

Wy :=1

Rx=1

Ry=1

Wz:=2

Weak memory models using event structures · Simon Castellan 14 / 31

Event structures save the day
On the example:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

We have the configuration:

Wx :=1 Wy :=1

Rx=1

Ry=1

Wz:=2

Weak memory models using event structures · Simon Castellan 14 / 31

Event structures save the day
On the example:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

We have the configuration:

Wx :=1 Wy :=1

Rx=1 Ry=1

Wz:=2

Weak memory models using event structures · Simon Castellan 14 / 31

Event structures save the day
On the example:

Wx :=1 Wy :=1

Rx=0 Rx=1 · · · Ry=0 Ry=1 · · ·

Wz:=0 Wz:=1 Wz:=2 Wz:=1 · · ·

We have the configuration:

Wx :=1 Wy :=1

Rx=1 Ry=1

Wz:=2

Weak memory models using event structures · Simon Castellan 14 / 31

III. Designing a semantics with event structures

Dessine-moi une structure d’événements

Weak memory models using event structures · Simon Castellan 15 / 31

A model for the TSO architecture
We now repeat the story using event structures for TSO.

Two steps:
I Open semantics: JtKO is an event structure
I Closed semantics: JtK = JtKO ∧MTSO

Store buffering:

x , y initialized to 0
x := 1 y := 1
r ← y s ← x

becomes:

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

Weak memory models using event structures · Simon Castellan 16 / 31

Thread semantics

By induction as before, generalizing operations to event structures.

Threads: (omitting thread-ids)
T Jx := e; tKρ = Wx :=ρ(e) · JtKρ T Jr ← x ; tKρ =

∑
i∈N Rx=i · JtK (ρ[r ← i])

Wx :=ρ(e)

JtKρ

Rx=0 Rx=1 . . .

JtK (ρ[r ← 0]) JtK (ρ[r ← 1]) . . .

Programs:

T Jt1 ‖ . . . ‖ tnK = Jt1K(∅, 1) ‖ . . . ‖ JtnK(∅, n)

Jt1K∅ . . . JtnK∅

Weak memory models using event structures · Simon Castellan 17 / 31

Consistent memory behaviours
A Σ-labelled partial order is TSO-consistent when it satisfies:
1. Write serialization. Writes on a variable are totally ordered.

Wx :=1 Wx :=3 Wx :=4

Wy :=2 Wy :=0

2. Coherent reading. For e = Rx=k ∈ q, Wx :=k is the maximal
event of {Wx :=n ∈ q | Wx :=n ≤ e}

Wy :=2

Wx :=2 Wx :=3 Ry=0 Rx=3

3. Writes propagation. For all writes w ∈ q, and for all
incomparable reads r , r ′ ∈ q in a different thread than w ,
(w ≤ r) iff (w ≤ r ′)

4. Thread sequentialization Two events from the same thread
are comparable [unless it is an independent read & write pair].

Weak memory models using event structures · Simon Castellan 18 / 31

MTSO and the synchronized product

Theorem
There exists an event structure MTSO whose configurations are
exactly consistent TSO-execution.
(Relies on TSO execution being closed under “prefix”)

How to combine T JtK and MTSO? Using the synchronized
product:

JtK = T JtK ∧MTSO.

Weak memory models using event structures · Simon Castellan 19 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Thread semantics)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Example

p =
x := 1 y := 1
r ← y s ← x

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

(Computing T JpK ∧MTSO)

We can observe r = 0 ∧ s = 0.

Weak memory models using event structures · Simon Castellan 20 / 31

Link with operational semantics

A trace of JtK is a linearization of a configuration of JtK

Theorem
The traces of JtK are in one-to-one correspondance between the
usual operational semantics for TSO.

However, there are no explicit buffers in our semantics.

Implicitly represented by concurrency: If Rx=k is concurrent to
Wx :=k ′ , the read does not see the write.

Weak memory models using event structures · Simon Castellan 21 / 31

Implicit vs. explicit

Our model is implicit: no internal events
Implicit semantics of SB.

Wx :=1 Wy :=1

Ry=0 Ry=1 Rx=1 Rx=0

Explicit semantics of SB.

Wx :=1 Wy :=1

cx :=1 cy :=1

Ry=0 Ry=1 Rx=1 Rx=0

Weak memory models using event structures · Simon Castellan 22 / 31

Reordering

In TSO, it is sound to reorder a write followed by an independent
read.

This changes the thread semantics.

T JSBKO becomes:

Wx :=1 Ry=0 Ry=1 Wy :=1 Rx=0 Rx=1

Weak memory models using event structures · Simon Castellan 23 / 31

IV. The game semantics behind that

Finding nails for a hammer

Weak memory models using event structures · Simon Castellan 24 / 31

A quick overview of game semantics
Game semantics: interactive semantics for higher-order
computation.

I Types → Games (set of moves + rules)
I Programs → Rule-preserving strategies (set of “valid plays”)

Objective: use game semantics to reformulate thread semantics.
Instead of

Jr ← x ; tKρ = complicated surgery on JtKρ

replace it by:

Jr ← x ; tKρ = let� 〈x , Jλr .tK〉

where:
I �: strategy composition
I let is a carefully-written strategy.

Weak memory models using event structures · Simon Castellan 25 / 31

A strategy for read

Usually, reads are interpreted by a strategy read : var→ unit:

read : (x : var) int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 26 / 31

A strategy for read

Usually, reads are interpreted by a strategy read : var→ unit:

read : (x : var) int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 26 / 31

A strategy for read

Usually, reads are interpreted by a strategy read : var→ unit:

read : (x : var) int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 26 / 31

A strategy for read

Usually, reads are interpreted by a strategy read : var→ unit:

read : (x : var) int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 26 / 31

A strategy for read

Usually, reads are interpreted by a strategy read : var→ unit:

read : (x : var) int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 26 / 31

A strategy for read

Usually, reads are interpreted by a strategy read : var→ unit:

read : (x : var) int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 26 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 27 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 27 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 27 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 27 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 27 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask

done

k done

Weak memory models using event structures · Simon Castellan 27 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask

done

k

done

Weak memory models using event structures · Simon Castellan 27 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k

done

Weak memory models using event structures · Simon Castellan 27 / 31

Interpreting let
Here let has type var→ (int→ int)→ unit. For instance:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 27 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 28 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 28 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd

run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 28 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 28 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 28 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask

done

k done

Weak memory models using event structures · Simon Castellan 28 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask

done

k

done

Weak memory models using event structures · Simon Castellan 28 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k

done

Weak memory models using event structures · Simon Castellan 28 / 31

Adding concurrency in the mix
This type support more interesting definitions of let:

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 28 / 31

Example

Consider t(x , y) = let x (λn. write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 29 / 31

Example

Consider t(x , y) = let x (λn. write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 29 / 31

Example

Consider t(x , y) = let x (λn. write y 1; n + 1):

x : var y : var int

ask

rd

write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 29 / 31

Example

Consider t(x , y) = let x (λn. write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 29 / 31

Example

Consider t(x , y) = let x (λn. write y 1; n + 1):

x : var y : var int

ask

rd write1

n

ok

n + 1

Weak memory models using event structures · Simon Castellan 29 / 31

Example

Consider t(x , y) = let x (λn. write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 29 / 31

Example

Consider t(x , y) = let x (λn. write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 29 / 31

A new model

Thread semantics. We use strategies let and write:

T Jlet x f K = let� 〈x , f 〉
T Jx := kK = write� 〈x , k〉

No more ad-hoc inductive constructions: all is contained in the
strategies let and write.
From Γ ` t : A, we get T JtK : JΓK⇒ JAK.

Storage semantics. MTSO induces a strategy on mTSO : JvarKn.

Semantics. For x1 : var, . . . , xn : var ` t : unit:

JtK = T JtK�mTSO

Weak memory models using event structures · Simon Castellan 30 / 31

Conclusion
Summary.

I We defined an denotational and extensible interpretation of
concurrent programs in terms of event structures.

I By using the higher-order power of strategies, the behaviour of
reads, writes, and the memory are all specified by one event
structure.

I Because of the game semantics, it scales to function calls,
control features, etc.

To go further.
I Look at explicit models for weaker archtectures (eg.

POWER/ARM)
I Implicit models for those architecture will need read-from

justifications (introduced by Jeffrey & Riley)
I Software models? (the model is very expressive)

Weak memory models using event structures · Simon Castellan 31 / 31

