Weak memory models using event structures

Simon Castellan!

1LIP, ENS Lyon

November 26th, 2016
Dagstuhl Seminar



A simple weak memory model: TSO

In this talk, we will focus on a simple weak memory model: TSO.
Store buffering. (can observe r = s =0 on TSO but not SC):

x, y initialized to 0
x =11y :=1
r <yl s+ x

Implementation: thread-local write buffers.

(ti |l ... || ta@(pe : V — N))
States of a SC machine

becomes (t1: k1€ (VXN) | ... | tnh: Kkn@u)

State of a TSO machine
Some transition rules:
(Write)  ((x := k;t:b)ou) — ((t: b++[(x, k)])@u)
(Commit) ((t: [(x, k)]++b)ep) — ((t : b)eu[x < k])

Weak memory models using event structures - Simon Castellan 2/31



This talk

A semantics that is
» denotational: executions computed by induction
» the semantics is thus compositional

» compact: based on event structures
» no combinatorial explosion

» extensible: inspired from game semantics
> it is easy to add loops, control operators, higher-order, ...

Outline of the talk:

1. A semantics warm-up: compute the SC semantics using
traces.

N

. Getting back the causality.

w

. An example: a model for TSO.

N~

. A game semantics aparté at the end (if time allows)

Weak memory models using event structures - Simon Castellan 3/31



I. A DENOTATIONAL SEMANTICS FOR SC

With traces of originality

Weak memory models using event structures - Simon Castellan 4 /31



Syntax precedes semantics

Our very simple programming language:

e,e == { Expressions }
keN|reR|e+é
v 2= { Instructions }
la:=e (Write on a variable)
|r« a (Read on a variable)
t := { Threads }
[t .5t
p:= { Programs }
ti ... || ta

In real life; conditionals and barriers.

Weak memory models using event structures - Simon Castellan 5/31



Denotational semantics

Goal: compute [[t] € E where E is some space of denotations.

Our space here: langages of traces.

Y,=V x{RW} (Abstract memory event)
Y.=NxX,xN (Concrete memory event)
E=2(%5)

Notations: (7 : Ry—x), (7 : Wye.—k). (7: thread-id)

Two steps:

1. Thread semantics [t]©: shared variables are considered
volatile: [x := 1;r + x]© does not guarantee to read 1 in r.

2. Closed semantics: once [t]© is calculated for the whole
program, we restrict the scope of the variable
[x := 1;r + x] reads 1in r.

Weak memory models using event structures - Simon Castellan 6 /31



Thread semantics

Semantics of threads. Parametrized over p: R — N and 7 € N.

(Writes) [x := e;t](p,7) = (7: wX::p(e)) [tlp

(Reads) [r « x;t](p,7) = | J (7 : Ruzi - [t] (plr + i, 7))
ieN

Weak memory models using event structures - Simon Castellan

7/31



Thread semantics

Semantics of threads. Parametrized over p: R — N and 7 € N.

(Writes) [x := e;t](p,7) = (7: wX::p(e)) [tlp
(Reads) [r < x;t](p,7) = U (7 : Rezi - [t](p[r < i], 7))
ieN

Semantics of programs. Obtained by interleaving (®):

[t |l --- | ta] = [t2](0, 1) ® ... ® [ta] (D, n)

Weak memory models using event structures - Simon Castellan 7/31



Thread semantics

Semantics of threads. Parametrized over p: R — N and 7 € N.

(Writes) [x := e;t](p,7) = (7: wX::p(e)) [tlp
(Reads) [r « x;t](p,7) = | J (7 : Ruzi - [t] (plr + i, 7))

ieN
Semantics of programs. Obtained by interleaving (®):

[t |l --- | ta] = [t2](0, 1) ® ... ® [ta] (D, n)

Example. Define p=(x := 1,y < r|y := 1i;x < )
> Wy.—1 - Wy::l : R-y:3 -Ry—2 € [[,D]]
» but R.—o - Ry—0 Wy=1Wy.=1 4 [[P]]

Weak memory models using event structures - Simon Castellan 7/31



Closed semantics

Obtained by eliminating “inconsistent” traces (eg. W,.—2 - Ry—3)

Linear memory model. A language of “consistent” traces:

M(p:V —N)=e
| T szu(x) ’ M(:u’)
| 71 Wemi - M(u[x < k])
M ::= M(x — 0)

Closed semantics: [p] = [p]° N M.

Example. Write p=(x := 1;r < y) || (v := 2;5s + x)

» every trace of [p] ends with R,—; or a R,—>.

Weak memory models using event structures - Simon Castellan 8/31



Summary

Advantages.
» Easy to define semantics, by induction on programs.

» By making M more complex, complex cache schemes can be

handled

Drawbacks.
» Combinatorial explosion due to interleavings.

» How to model reordering of instructions?

Towards partial-orders.
» Because of reorderings, threads are not totally ordered

» Our goal: compute fine precisely dependencies between the
instructions, given an architecture.

Weak memory models using event structures - Simon Castellan 9/31



II. EVENT STRUCTURES

Raiders of the lost causality

Weak memory models using event structures - Simon Castellan 10/31



Replacing traces by partial-orders

Idea: thread semantics should be a set of partial-orders.
Term:

x =Ly =1,
r 4= X;s < vy,
z = s+t

Weak memory models using event structures - Simon Castellan 11/31



Replacing traces by partial-orders
Idea: thread semantics should be a set of partial-orders.

Dependencies (depends on the architecture):

—
<
[y

x
T4
<

~

Weak memory models using event structures - Simon Castellan

11/31



Replacing traces by partial-orders

Idea: thread semantics should be a set of partial-orders.

Executions (depends on the architecture):

Wy.— wy::l
~ ~
Ry=i Ry—j
~ '
Woizitj
for i,j € N2.

» traces on X . becomes partially ordered multisets over X,
(pomsets)

» [t]© becomes a set of such pomsets.

Weak memory models using event structures - Simon Castellan 11/31



Replacing traces by partial-orders

Idea: thread semantics should be a set of partial-orders.

Executions (depends on the architecture):

Wy.— wy::l
~ ~
Ry=i Ry—j
~ '
Woizitj
for i,j € N2.

» traces on X . becomes partially ordered multisets over X,
(pomsets)

» [t]© becomes a set of such pomsets.

» Problem: lots of redundancies in the pomsets..

Weak memory models using event structures - Simon Castellan 11/31



Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For

instance:
x*l
Rx=o Ry—o Ry—1
W e
Wz=0 Wz—1 W,.—o W,.—1 -

Which sets of events w are (partial) executions?

» w must be downward-closed for —

Weak memory models using event structures - Simon Castellan 12 /31



Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For

instance:
x*l
Rx=o Ry—o Ry—1
W e
Wz=0 Wz—1 W,.—o W,.—1 -

Which sets of events w are (partial) executions?
» w must be downward-closed for —

» and ... 7 {W,.—1,Rx—0,Rx=1} cannot be a valid execution.

Weak memory models using event structures - Simon Castellan 12 /31



Can we sum up all executions in a single object?

Can we glue the executions all together in a partial-order? For

instance:
Wi:=1 wy::l

Which sets of events w are (partial) executions?
» w must be downward-closed for —

» and ... 7 {W,.—1,Rx—0,Rx=1} cannot be a valid execution.

= Need more structure than a partial-order: conflicts.

Weak memory models using event structures - Simon Castellan 12 /31



Event structures save the day

Definition (Event structures)

A set of event E with:
» A notion of causality represented by a partial order <g
» A notion of conflict represented by a relation ~g
> A labelling /: E — ¥

(4 axioms)

Definition (Configuration or partial execution)
A configuration of E is a subset w of E:
» downward-closed: e < e’ € w = e € w.

» that does not contain two conflicting events

Weak memory models using event structures - Simon Castellan 13 /31



Event structures save the day
On the example:

SN, N

R.= Ri=1 YWwWww\ - Ry—0 vww Ry—=1 v - -

wz::O wz::l wz::2 wz::l

Weak memory models using event structures - Simon Castellan 14 /31



Event structures save the day
On the example:

SN, N
N

We have the configuration:

Ry—

wz::O wz::l wz::2 wz::l

Wx::l

Weak memory models using event structures - Simon Castellan

Ry—1 W\ - Ry—0 vww Ry—=1 v - -

14 /31



Event structures save the day
On the example:

U, N

Ry—

wz::O wz::l wz::2 wz::l

We have the configuration:

wx::l

d

Ry=1

Weak memory models using event structures - Simon Castellan

Ry—0 vww Ry—=1 v - -

14 /31



Event structures save the day
On the example:

U, N

Ry—

wz::O wz::l wz::2 wz::l

We have the configuration:

Wy:=1 wy::l

¢

Rx=1

Weak memory models using event structures - Simon Castellan

Ry—0 vww Ry—=1 v - -

14 /31



Event structures save the day
On the example:

U, N

R.=0 Ry—o v Ry—1 vwy - -

wz::O wz::l wz::2 wz::l

We have the configuration:

wx::l wy::l
L L
Rx:l R'y:1

Weak memory models using event structures - Simon Castellan

14 /31



Event structures save the day
On the example:

U, N

R.=0 Ry—o v Ry—1 vwy - -

wz::O wz::l Wy—2 wz::l

We have the configuration:

Wy=1 wy::1
J J
Rx:l Ry:l
\A A/
wz::2

Weak memory models using event structures - Simon Castellan

14 /31



III. DESIGNING A SEMANTICS WITH EVENT STRUCTURES

Dessine-moi une structure d'événements

Weak memory models using event structures - Simon Castellan 15 /31



A model for the TSO architecture

We now repeat the story using event structures for TSO.

Two steps:
» Open semantics: [t]© is an event structure
» Closed semantics: [t] = [[t]]o A Mrso

Store buffering:

x, y initialized to 0
x =11y =1
r< vyl s+ x

becomes:

M M

Ry—o vvwwwwww Ry —1 x1’VVV\/VVVVVV\/Rx0

Weak memory models using event structures - Simon Castellan 16 /31



Thread semantics

By induction as before, generalizing operations to event structures.

Threads: (omitting thread-ids)
Tlx = € tlp=Wempey [l | TIr < xitlo = LrenRumi - [e] (ol 1)

wx::p(e) Ry—0 WWWWWW Ry—1 MWk - . .
< 4 <
< 1 £ (ol +0))  [¢] (ol - 1]) ‘
Programs:
Tt ll - el = [6]@, 1) 11 . [ TtaD (0, )
[t]0 ... [ta]0

Weak memory models using event structures - Simon Castellan 17 /31



Consistent memory behaviours
A Y -labelled partial order is TSO-consistent when it satisfies:

1. Write serialization. Writes on a variable are totally ordered.

Wy.=1 P wx::3 D Wy—g
RY
wy::2 - wy::0

2. Coherent reading. For e = R, € g, W,.— is the maximal
event of {Wy.—p € ¢ | Wy < €}

wy::2

Wy=2 D Wy.=3 m Ry=3

3. Writes propagation. For all writes w € ¢, and for all
incomparable reads r,r' € q in a different thread than w,
(w < r)iff (w < r')

4. Thread sequentialization Two events from the same thread
are comparable [unless it is an independent read & write pair].

Weak memory models using event structures - Simon Castellan 18 /31



Mrso and the synchronized product

Theorem
There exists an event structure .#rsg whose configurations are
exactly consistent TSO-execution.

(Relies on TSO execution being closed under “prefix”)

How to combine .7 [t] and .#1s0? Using the synchronized
product:

[[t]] = gﬂt]] A Mrso.

Weak memory models using event structures - Simon Castellan 19 /31



Example

o x =11y =1
Cr ¢+ yl| s+ x
Wx::l wy::l

T S

Ry—o vwwwwww Ry=1  Rx=1 Wwwwwwwww Ry—g

(Thread semantics)

Weak memory models using event structures - Simon Castellan 20/31



Example

o x =11y =1
Cr ¢+ yl| s+ x
wXI:]. wy;:]_

T S

Ry—o vwwwwww Ry=1  Rx=1 Wwwwwwwww Ry—g

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

o x =11y =1
Cr ¢+ yl| s+ x
Wx::l wy::l

T S

Ry—o vvwwwww Ry=1 Rx=1 Wwwwwwwww Rx—o

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

o x =11y =1
Cr ¢+ yl| s+ x
Wy=1 Wy::1

T S

Ry—0 wwwwwwy Ry=1  Ry=1 wwwwwwww R, —g

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

o x =11y =1
Cr ¢+ yl| s+ x
Wx::l wy::l

T S

Ry—o vwwwwwwy Ry—1 Re=1 Wwwwwwwww Ry—g

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

o x =11y =1
Cr ¢+ yl| s+ x
wX::]. wy;:]_

T S

Ry—o vwwwwwwy Ry—1 Re=1 Wwwwwwwww Ry—g

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

Wy.—1

Wy.—1
YN e e Yy

Ry—o vwwwwwwy Ry—1 Re=1 Wwwwwwwww Ry—g

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

o x =11y =1
C r+ vyl s« x
Wy=1
Ry—o vwwwwww Ry—1  Ry—1 IVV\NVVVVVV\’RX 0

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

o x =11y =1
C r+ vyl s+ x
X—].
M M
Ry—0 vwwwww, Ry—1 xl’VVVVVVVVVV\/RXO

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

Wie Wy
N

Ry—o vwwwwww Ry=1  Rx=1 Wwwwwwwww Ry—g

(Computing 7 [[p] A A1so)

Weak memory models using event structures - Simon Castellan 20/31



Example

Wie Wy
N

Ry—o vwwwwww Ry=1  Rx=1 Wwwwwwwww Ry—g

(Computing 7 [[p] A A1so)

We can observe r =0 A s =0.

Weak memory models using event structures - Simon Castellan 20/31



Link with operational semantics

A trace of [t] is a linearization of a configuration of [t]

Theorem
The traces of [[t] are in one-to-one correspondance between the
usual operational semantics for TSO.

However, there are no explicit buffers in our semantics.

Implicitly represented by concurrency: If Ry— is concurrent to
W,.—xs, the read does not see the write.

Weak memory models using event structures - Simon Castellan 21 /31



Implicit vs. explicit

Our model is implicit: no internal events
Implicit semantics of SB.

x” X_IM

Ry—0 wwwwwwwy Ry—1 x1’VVV\/VVVVVV\/Rx0

Explicit semantics of SB.

Weak memory models using event structures - Simon Castellan 22 /31



Reordering

In TSO, it is sound to reorder a write followed by an independent
read.

This changes the thread semantics.

T[SB]° becomes:

wx::l F\"y:O AN Ry:l wy::l R><:0 W R‘X:].

Weak memory models using event structures - Simon Castellan 23 /31



IV. THE GAME SEMANTICS BEHIND THAT

Finding nails for a hammer

Weak memory models using event structures - Simon Castellan 24 /31



A quick overview of game semantics

Game semantics: interactive semantics for higher-order
computation.

» Types — Games (set of moves + rules)

» Programs — Rule-preserving strategies ( set of “valid plays”)

Objective: use game semantics to reformulate thread semantics.
Instead of

[r < x;t]p = complicated surgery on [t]p
replace it by:
[r < x;t]p=1let ® (x, [Ar.t])
where:

> (©: strategy composition

> let is a carefully-written strategy.

Weak memory models using event structures - Simon Castellan 25 /31



A strategy for read

Usually, reads are interpreted by a strategy read : var — unit:

read: (x:var)— int

Weak memory models using event structures - Simon Castellan 26 /31



A strategy for read

Usually, reads are interpreted by a strategy read : var — unit:
read: (x:var)— int

ask

Weak memory models using event structures - Simon Castellan 26 /31



A strategy for read

Usually, reads are interpreted by a strategy read : var — unit:

read: (x:var)— int

ask

v

rd

Weak memory models using event structures - Simon Castellan

26 /31



A strategy for read

Usually, reads are interpreted by a strategy read : var — unit:
read: (x:var)— int

ask

v

rd
<+
k

Weak memory models using event structures - Simon Castellan 26 /31



A strategy for read

Usually, reads are interpreted by a strategy read : var — unit:
read: (x:var)— int

ask

A/
rd
<+
k

Ty

k

Weak memory models using event structures - Simon Castellan 26 /31



A strategy for read

Usually, reads are interpreted by a strategy read : var — unit:
read: (x:var)— int

ask

A/
rd
<+
k

Ty

Problem. No access to the continuation to break causalities.

k

Weak memory models using event structures - Simon Castellan 26 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:

x:var - f : (int — unit) — unit

Weak memory models using event structures - Simon Castellan 27 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

Weak memory models using event structures - Simon Castellan 27 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

Weak memory models using event structures - Simon Castellan 27 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

<
k

Weak memory models using event structures - Simon Castellan 27 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

<
k

\D .

Weak memory models using event structures - Simon Castellan 27 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

<
k
\D run

v

ask

Weak memory models using event structures - Simon Castellan 27 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

<
k
\D run

v

ask

<
k

Weak memory models using event structures - Simon Castellan 27 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

4
k

\D .

<

ask done

<
k

Weak memory models using event structures - Simon Castellan 27 /31



Interpreting let
Here let has type var — (int — int) — unit. For instance:

let read x f =
let z = Ix in f z

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

4
k

\D .

<

ask done
< 4
k

done

Weak memory models using event structures - Simon Castellan 27 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

Weak memory models using event structures - Simon Castellan 28 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

Weak memory models using event structures - Simon Castellan 28 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

rd/

Weak memory models using event structures - Simon Castellan 28 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

4%/
rd run

Weak memory models using event structures - Simon Castellan 28 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:
x:var - f : (int — unit) — unit

run

4%/
rd run

<
k

Weak memory models using event structures - Simon Castellan 28 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

run
rd Q/run
<
k
done

Weak memory models using event structures - Simon Castellan 28 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

run
rdQ/run
<
k
done
e
done

Weak memory models using event structures - Simon Castellan 28 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

run
rdQ/run
<
k
ask done
e
done

Weak memory models using event structures - Simon Castellan 28 /31



Adding concurrency in the mix
This type support more interesting definitions of let:

let read x f =
let thr = spawn (fun () —> Ix) in
f (lazy (wait thr))

This gives the following strategy:

x:var - f : (int — unit) — unit

run
rdQ/run
%
\\\\\>f done
done

Weak memory models using event structures - Simon Castellan 28 /31



Example

Consider t(x,y) = let x (An. write y 1;n+ 1):

X :var — y :var — int

Weak memory models using event structures - Simon Castellan 29 /31



Example

Consider t(x,y) = let x (An. write y 1;n+ 1):

X :var — y :var — int

ask

Weak memory models using event structures - Simon Castellan 29 /31



Example

Consider t(x,y) = let x (An. write y 1;n+ 1):

X :var — y :var — int

ask

rd/

Weak memory models using event structures - Simon Castellan 29 /31



Example

Consider t(x,y) = let x (An. write y 1;n+ 1):

X :var — y :var — int

ask

Q/(
rd write;

Weak memory models using event structures - Simon Castellan

29 /31



Example

Consider t(x,y) = let x (An. write y 1;n+ 1):

X :var — y :var — int

ask

Q/(
rd write;

;

Weak memory models using event structures - Simon Castellan

29 /31



Example

Consider t(x,y) = let x (An. write y 1;n+ 1):

X :var — y :var — int

ask

Q/(
rd write;

L <

n ok

Weak memory models using event structures - Simon Castellan

29 /31



Example

Consider t(x,y) = let x (An. write y 1;n+ 1):

X :var — y :var — int

ask

Q/(
rd write;

L <

n ok

e

n+1

Weak memory models using event structures - Simon Castellan

29 /31



A new model

Thread semantics. We use strategies let and write:

Tletx ] =1let ® (x,f)
T[x := k] = write ® (x, k)

No more ad-hoc inductive constructions: all is contained in the
strategies 1let and write.
From I t: A, we get 7[t] : [I] = [A]

Storage semantics. .#1sp induces a strategy on mrgg : [var]”.

Semantics. For x; : var,...,x, :var - t : unit:

[t] = 7[t] ® mrso

Weak memory models using event structures - Simon Castellan 30/31



Conclusion
Summary.

» We defined an denotational and extensible interpretation of
concurrent programs in terms of event structures.

» By using the higher-order power of strategies, the behaviour of
reads, writes, and the memory are all specified by one event
structure.

» Because of the game semantics, it scales to function calls,
control features, etc.

To go further.

» Look at explicit models for weaker archtectures (eg.
POWER/ARM)

» Implicit models for those architecture will need read-from
Justifications (introduced by Jeffrey & Riley)

» Software models? (the model is very expressive)

Weak memory models using event structures - Simon Castellan 31/31



