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Reasoning on concurrent programs

Consider the program mp:

data = flag = 0
data := 17; r ← flag ;
flag := 1 v ← data

Does mp |= r = 1⇒ v = 17?

Two main solutions to prove this:

I Operational semantics formalises the machine

I Axiomatic semantics formalises the executions
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Operational semantics: machines as LTSs
Formalises an abstract machine running the program:

〈(x := 1; t ‖ p)� µ〉 Wx :=1−−→ 〈(t ‖ p)� µ[x := 1]〉.

Transitions labelled by an action in Σ ::= Wx :=k | Rx=k | . . ..

Executions of the program become traces of the LTS:

〈mp� µ〉 Wdata:=17−−−−−→
Wflag :=1−−−−→

Rflag=1−−−−→ Rvalue=17−−−−−→

⊕ Represents nondeterministic branching points.
 Liveness properties, whole program optimisations.

� Combinatorial explosion due to interleaving.
 Hard to simulate, hard to reason on.
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Axiomatic semantics
Formalises a program by the set of its valid executions:

program
syntax
 execution candidates︸ ︷︷ ︸

set of events+relations

model
 executions

Two candidates for mp:

Wdata:=17 Rflag=0

Wflag :=1 Rdata=0

po po

Wdata:=17 Rflag=1

Wflag :=1 Rdata=0

po rf po

valid on all architectures valid on some (eg. ARM)

⊕ Causal account of executions.
 Easy to simulate; allows higher-level reasoning.

� Per-execution modelling of the program.
 No grip on the nondeterministic branching point
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The best of both worlds: event structures

Operational
Machines & transitions

Con�ict between transitions

Axiomatic
Execution-level events

Causality _ on each execution

Event structures
global notion of events (≈ transitions)

events equiped with and _

globalise eventsadd causality to transitions

mp:

Wdata:=17

Wflag :=1

Rflag=1 Rflag=0

Rdata=17 Rdata=0 Rdata=17

Maximal con�ict-free subsets ↔ Axiomatic executions.
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Outline of the talk

(1) From programs to event structures.

The sequentially consistent case.

(2) A strong data-race-free theorem for TSO.

Which preserves liveness properties.

(3) Relaxing coherence.

Improving over the co of axiomatic semantics.

(4) Beyond assembly: higher-order languages

When labels become moves.
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I. From programs to event structures: naive SC

JmpK =

Wdata:=17

Wflag :=1 Rflag=0

Rflag=1 Rdata=0 Rdata=17 Wflag :=1

Rdata=17 Wdata:=17

Wflag :=1
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Our language
We consider a simple imperative language:

e ::= r | e + e | . . . expressions

t ::= ε | x := e; t | r ← x ; t threads

| output e | r ← input

| if (0 == e) {t} {t}
p ::= t ‖ . . . ‖ t programs

I Features global variables and thread registers

I Input / Output instructions used as �observation points�

Traditional LTS on states 〈p � µ : V → N〉 labeled over:

ΣSC ::= Rx=k | Wx :=k | Ok | Ik
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Event structures

De�nition
A Σ-event structure is a tuple (E ,≤E ,#E , lblE : E → Σ):

I (E ,≤E ): a partial order representing causality

I #E ⊆ E 2: binary irre�exive relation representing con�ict

+ axioms of �nite causes and con�ict inheritance.

 _ is derived from ≤ and from #.

A con�guration of E is a subset x ⊆ E which is:

I downclosed and con�ict-free

C (E ), the set of con�gurations of E is a LTS:

x
a−→ y i� y = x ] {e} ∧ lbl(e) = a.
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Overview of the semantics

Goal: produce J〈p � µ〉KSC for each state such that:

C (J〈p � µ〉KSC) ≈ 〈p � µ〉 as ΣSC-LTSs.

4 steps:

(1) Semantics of individual threads

(2) Semantics of programs (without memory)

(3) Semantics of memory

(4) Combining the semantics.
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Semantics of individual threads and memory

Individual threads. Using sums and pre�xes:

Jx := k; tKSC = Wx :=k · JtKSC
Wx :=k

JtKSC

Jr ← x ; tKSC =
∑
n∈N

Rx=n · Jt(n)KSC
Rx=0 Rx=1 . . .

Jt(0)KSC Jt(1)KSC . . .

Programs. Threads are combined using parallel composition

Jt1 ‖ . . . ‖ tnKSC = Jt1KSC ‖ . . . ‖ JtnKSC Jt1KSC . . . JtnKSC
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Semantics of the memory

Storage semantics in SC orders accesses on the same variable.

mx :=k =
Rx=k Wx :=0 Wx :=1 . . .

mx :=k mx :=0 mx :=1 . . .

JµK = mx :=µ(x) ‖ my :=µ(y) ‖ . . .

JµK is Σm-labelled (Σm ::= Rx=k | Wx :=k).

More concretely:

I Events of JµK: consistent history on one variable.

I Con�gurations of JµK: consistent global history.

JµK works for all multicopy atomics architectures.
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Combining them: interaction states
J〈p � µ〉K should combine the behaviours of JpK and JµK:

Wdata:=17 Rflag=1

Wflag :=1 Rdata=17

JpK JpKJµK ∈ C (J〈p � µ〉K)

De�nition
A synchronisation is a tuple X = (X .thr,X .hist, ϕ) with:

I X .thr ∈ C (JpK) and X .hist ∈ C (JµK).

I ϕ is a label-preserving bijection X .thr ∩ Σm ' X .hist.

There are two partial orders on X .thr:

s ≤thr(X) s ′ := s ≤JpK s ′ s ≤mem(X) s ′ := ϕ s ≤JµK ϕ s ′.

X is acyclic when ≤thr(X ) ∪ ≤mem(X ) is acyclic.
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The prime construction

Acyclic synchro. should be the con�gurations of J〈p � µ〉K.
 In any E , |E | ' {x ∈ C (E ) | x has a greatest element}.

Theorem (Prime construction, [Hay14])
For a collection of partial orders Q (closed under pre�x), there

exists an event structure Pr(Q) such that C (Pr(Q)) ∼= Q.

 Its events are elements of Q with a greatest element.

We let JpK ∗ JµK to the be primes of acyclic con�gurations.
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Correctness

JpK ∗ JµK can be equipped with two orders ≤thr and ≤mem.

JmpK =

Wdata:=17

Wflag :=1 Rflag=0

Rflag=1 Rdata=0 Rdata=17 Wflag :=1

Rdata=17 Wdata:=17

Wflag :=1

Letting J〈p � µ〉K = JpK ∗ JµK we have: J〈p � µ〉K ≈ 〈p � µ〉.
 Proof of correctness component by component.
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II. A strong DRF result for TSO

if p race-free on SC:
p |=SC ϕ⇔ p |=TSO ϕ
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Total Store Ordering in one slide [OSS09]

TSO is a memory speci�cation allowing for store bu�ers.

x = y = 0.
x := 1 y := 1
r ← y s ← x

Allowed r = s = 0.

Usual LTS for TSO equips threads with a bu�er in (V × N)∗.

I New instruction, fence: �ushes the current thread's
bu�er.

I New labels: ΣTSO := ΣSC | fence | BRx :=k | BWx :=k .

Our variations:

I Atomic accesses require empty bu�ers (as fences do)

I Input/Outputs do not require empty bu�ers.
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Threads are not sequential anymore
For the thread t = x := 1; r ← y , a TSO processor may do:
I Store the write, perform the read, commit the write.
I Commit directly the write and perform the read.

(t, [])

(r ← y , [(x , 1)])

(ε, [(x , 1)]) (r ← y , [])

(ε, [])

BWx :=1

R y=
k

W
x :=1

W
x :=1 R y=

k

BWx :=1

Wx :=1 Ry=0 Ry=1 . . .

J(t, [])KTSO

Events Wx :=1 and Ry=k should be concurrent in J(t, [])KTSO.
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Threads are not deterministic anymore
For the thread t = x := 1; r ← x , a TSO processor may do:

I commit the write, and satisfy the read from memory

I store the write, read from the bu�er and only then
commit.

Those transitions are not concurrent.

(t, [])

(r ← x , [(x , 1)])

(ε, [(x , 1)]) (r ← x , [])

(ε, []) (ε, [])

BWx :=1

BRx :=
1 Wx :=1

Wx :=1 Rx=k

BWx :=1

Wx :=1 BRx :=1

Rx=0 Rx=1 . . . Wx :=1

J(t, [])KTSO

Events Wx :=1 and BRx :=1 should be in con�ict in J(t, [])KTSO.
Reconciling nondeterminism and causality · Simon Castellan 19 / 37



Threads are not deterministic anymore
For the thread t = x := 1; r ← x , a TSO processor may do:

I commit the write, and satisfy the read from memory

I store the write, read from the bu�er and only then
commit.

Those transitions are not concurrent.

(t, [])

(r ← x , [(x , 1)])

(ε, [(x , 1)]) (r ← x , [])

(ε, []) (ε, [])

BWx :=1

BRx :=
1 Wx :=1

Wx :=1 Rx=k

BWx :=1

Wx :=1 BRx :=1

Rx=0 Rx=1 . . . Wx :=1

J(t, [])KTSO

Events Wx :=1 and BRx :=1 should be in con�ict in J(t, [])KTSO.
Reconciling nondeterminism and causality · Simon Castellan 19 / 37



Generalised pre�x and TSO thread semantics
To represent thread concurrency, we relax the usual pre�x:

` ·R E =
`

E

: ` ≤ e when (`, lbl(e ′)) 6∈ R for some e ′ ≤ e.

where R ⊆ Σ× Σ is the concurrency relation. For TSO:

R = {(Wx :=k , e) | e I/O, read on nonatomic y 6= x}

A few interesting rules:

Jx := k; t, bK = BWx :=k ·R Jt, b++(x , k)K
Jfence; t, bK = Wx1:=k1 ·R . . . ·R Wxn:=kn ·R fence ·R Jt, εK

when b = [(x1, k1), . . . , (xn, kn)]

Jr ← x ; t, bK = (BRx :=k ·R Jt[r := k], bK) + (Wy :=m ·R Jr ← x ; t, b′K)
when x occurs in b with value k and b = (y ,m)++b′.

Reconciling nondeterminism and causality · Simon Castellan 20 / 37



Generalised pre�x and TSO thread semantics
To represent thread concurrency, we relax the usual pre�x:

` ·R E =
`

E

: ` ≤ e when (`, lbl(e ′)) 6∈ R for some e ′ ≤ e.

where R ⊆ Σ× Σ is the concurrency relation. For TSO:

R = {(Wx :=k , e) | e I/O, read on nonatomic y 6= x}

A few interesting rules:

Jx := k; t, bK = BWx :=k ·R Jt, b++(x , k)K
Jfence; t, bK = Wx1:=k1 ·R . . . ·R Wxn:=kn ·R fence ·R Jt, εK

when b = [(x1, k1), . . . , (xn, kn)]

Jr ← x ; t, bK = (BRx :=k ·R Jt[r := k], bK) + (Wy :=m ·R Jr ← x ; t, b′K)
when x occurs in b with value k and b = (y ,m)++b′.

Reconciling nondeterminism and causality · Simon Castellan 20 / 37



Results about the TSO semantics.

The semantics extends to machines the same way as for SC:

J〈t1 ‖ . . . ‖ tn � µ〉KTSO = (Jt1KTSO ‖ . . . ‖ JtnKTSO) ∗ JµK
where ti of the form (ti , bi )

Theorem
For any TSO machine state m, we have

JmKTSO ≈ m.
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Let us talk about races

Races are concurrent accesses on nonatomic variables.

De�nition
A program p is race-free when for all 〈p � µ〉 reducing to
〈p′ � µ′〉 (on SC), then p′ does not have two initial actions on
the same nonatomic variable one of which being a write.

This only allows thread communication on atomic variables:

Lemma
Let p be race-free and e, e ′ ∈ J〈p � µ〉KSC such that:

I e and e ′ are not in con�ict and not comparable for ≤thr,

I e <mem e ′ with no events in between.

Then e and e ′ are actions on an atomic variable.

Reconciling nondeterminism and causality · Simon Castellan 22 / 37



Data-Race-Free theorem
We can generalise the result of [Owe10]:

Theorem
Let p be a race-free program. For any µ:

C (J〈p � µ〉KTSO) ≈io C (J〈p � µ〉KSC),

≈io : weak bisimulation where visible events are IO events.

 satisfaction of Hennessy-Milner formulas is transferred.

Among HML formulas, there are liveness properties, eg.

Program p inputs a natural number, outputs its double and
then stops.

(NB: Trace based equivalences would allow p to stop after the
input due to a deadlock.)
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Outline of the proof
We �rst build a partial function ψ : JpKTSO ⇀ JpKSC:

BWx :=1

Wx :=1 Ry=k Wx :=1

Rx=kBWx :=1

Wx :=1 BRx :=1 Wx :=1

Rx=0 Rx=1 . . . Wx :=1 Rx=1

This function induces ψ̄ : C (JpKTSO)→ C (JpKSC).

Lemma
If p is race-free, ψ̄ lifts to C (J〈p�µ〉KTSO)→ C (J〈p�µ〉KSC).

 The bisimulation is built using this map.
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III. Relaxing coherence

Wx :=1 Wx :=2

Wx :=2 Wx :=1

vs. Wx :=1 Wx :=2
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Coherence is too strict
Our memory cell JµK orders every access to the same variable.
 Introduces undesired redundancy, eg. in mp:

Wdata:=17

Wflag :=1 Rflag=0

Rflag=1 Rdata=0 Rdata=17 Wflag :=1

Rdata=17 Wdata:=17

Wflag :=1

Wdata:=17

Wflag :=1

Rflag=1 Rflag=0

Rdata=17 Rdata=0 Rdata=17

Semantics of (1) Optimised version

 Same outcomes but fewer con�gurations on the right.

Goal: Given E , build Eµ, a more compact version of E ∗ JµK?
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Our take on candidates
A candidate is a Σ-partial order where reads are justi�ed:

Wx :=1 Wx :=2

Rx=2

Wx :=1 Wx :=2

Rx=2

C1 C2

valid invalid

C is valid when all linearisations of writes are SC-executable.

De�nition
An execution of x ∈ C (E ) is a valid candidate C such that:

(1) |x | = |C | and s ≤E s ′ ⇒ s ≤C s ′ for s, s ′ ∈ x

(2) In C , I/O actions are all comparable.

(3) It is minimal: there are no C ′ satisfying (1) and (2) with
≤C(≤C ′ .
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The event structure Eµ

We can construct an event structure based on executions:

Theorem
There exists an event structure Eµ whose maximal

con�gurations correspond to pairs (x ,C ) of a maximal

con�guration of E and C an execution of x .

Non-incremental: need the maximal con�gurations of E .

Theorem

I trio(Eµ) = trio(E ∗ JµK)

I Eµ simulates E ∗ JµK.

E ∗ JµK does not simulate Eµ: choices are made later in Eµ.
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Approximating the executions
How to compute the executions of x ∈ C (E ) ?

1. Compute the possible justi�cations for reads in x .  A
set of candidates C

2. For each C , add causal links to compute the possible
executions augmenting C .

A simple heuristic, add links in the following cases:

Wx :=k ′ Wx :=k

Rx=k

Wy :=k ′ Wx :=k

Rx=k Wx :=k ′′

(Heuristic independently developed by Luc Maranget)

This heuristic can be implemented in Herd.

 Ok for simple cases, but not for complicated programs...
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IV. Beyond assembly: higher-order languages
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Functions and LTS
What about code calling foreign functions?

void redButton (void) {

if (amIPresident())

launchMissiles();

}

This can be described by a LTS using call/return events:

·

·

· ·

· ·

·

·

call(amIPresident())

ret(true) ret(false)

call(launchMissiles)

ret()

ret()

ret()

. . . or as an event structure.
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Labels organise themselves as games
I Labels are now polarised Context/Program:

Rx=k  
ReadReqx

ReadAnsk

I Labels have rules: �Do not return before you are called.�

 Labels organise themselves in games: polarised forests.

call(amIPresident) call(launchMissiles)

ret(true) ret(false) ret()

A rule-preserving trace of a game is called a play.

 Game semantics pioneered the study of programs as sets
of plays on games (strategies) [HO00, AJM00].
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Parallel functions as event structures

[RW11] used event structures to represent strategies:

u

w
v

int sum(void) {

return f(0) + f(1);

}

}

�
~ =

call(f , 0) call(f , 1)

ret(i) ret(j)

ret(i + j)

 Opens the possibility to model open higher-order
concurrent programs with event structures.

However, major restriction, linearity: in each con�guration,
each move must be played once!
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Nonlinearity
What if Player wants to be nonlinear?
 To call a function twice (as in the previous slide)

Following [AJM00], we add copy indices to moves:

game A  game !A where moves are duplicated ω times.

The previous example becomes:

u

w
v

int sum(void) {

return f(0) + f(1);

}

}

�
~ =

call(f , 0)0 call(f , 1)1

ret(i)p ret(j)q

ret(i + j)〈p,q〉
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A model of IPA

These considerations lead to:

Theorem (C., Clairambault, Winskel)
These expanded games and strategies form a model of

higher-order concurrent and nondeterministic computation.

Model highlights the complicated causal patterns of such
programs:
u

wwwww
v

int shy(void){

static int timesCalled = 0;

timesCalled ++;

if (timesCalled == 2) return 0;

else while(true);

}

}

�����
~

=

q0 . . .

q1 q2 . . .

0 0 0

0 0 0
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Related work

Weak memory and event structures.

I Brookes & Kavanagh's model of TSO with pomsets.

I Pichon & Sewell's operational semantics on event
structures

I Je�rey & Riely's axiomatic model using event structures

Game Semantics for concurrency.

I Laird, and Ghica & Murawski's models using interleaving.

I Tsukada & Sakayori's model of concurrency using set of
pomsets.

I Hirschowitz's model using presheaves over spans.
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A rich semantic universe based on event structures
Extensions. Model is extensible and has been extended to:
I continuous probabilities (Paquet, Winskel)

I quantum computation (Clairambault, de Visme, Winskel)

Ongoing work. In many di�erent contexts:
I probabilistic programming

I dependences of logical rules

I message-passing concurrency

Research agenda.

I Investigate more applied models (ARM, C11), ...
I How to have a �nite representation of these two issues:

I recursion (depth)
I unbounded contexts (breadth)

I Implement such models in a �exible way (à la Herd), . . .
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