Reconciling nondeterminism and causality

Event structures for weak memory

Simon Castellan!
(Joint work with Jade Alglave and Jean-Marie Madiot.)

Limperial College London, UK

27 november 2018

Reasoning on concurrent programs

Consider the program mp:

data = flag = 0
data :== 17, || r < flag;
flag :=1 v < data

Doesmp =r=1= v =177

Reconciling nondeterminism and causality - Simon Castellan

2/37

Reasoning on concurrent programs

Consider the program mp:

data = flag = 0
data :== 17, || r < flag;
flag :=1 v < data

Doesmp =r=1= v =177

Two main solutions to prove this:
» Operational semantics formalises the machine
» Axiomatic semantics formalises the executions

Reconciling nondeterminism and causality - Simon Castellan 2/37

Operational semantics: machines as LTSs

Formalises an abstract machine running the program:
W
(=1t p)op == ((t]l p)©pulx:=1]).
Transitions labelled by an action in ¥ ::=W,._ | Ruck | - - ..

Executions of the program become traces of the LTS:

> Wdata:=17 wflag::l R-f/ag:l\ Ruajue=17

(mp © p

Reconciling nondeterminism and causality - Simon Castellan 3/37

Operational semantics: machines as LTSs

Formalises an abstract machine running the program:
(=1t | p) @) == (¢ || p) © px :=1]).
Transitions labelled by an action in ¥ ::=W,._ | Ruck | - - ..

Executions of the program become traces of the LTS:

> Wdata:=17 wﬂag3:1 R-f/ag:l\ Ruajue=17

(mp © p

@ Represents nondeterministic branching points.
~> Liveness properties, whole program optimisations.

Combinatorial explosion due to interleaving.
~+ Hard to simulate, hard to reason on.

Reconciling nondeterminism and causality - Simon Castellan 3/37

Axiomatic semantics
Formalises a program by the set of its valid executions:

syntax . . model .
program ~ execution candidates "~~~ executions

Vv
set of events+relations

Two candidates for mp:

wdata::l? Rf/ag:O wdata::l? Rf/ag:l

pog VPO oy, IV po

Wf/ag::l Rdata:O Wflag::l R'data:O
valid on all architectures valid on some (eg. ARM)

Reconciling nondeterminism and causality - Simon Castellan

4/37

Axiomatic semantics
Formalises a program by the set of its valid executions:

syntax . . model .
program ~ execution candidates "~~~ executions

Vv
set of events+relations

Two candidates for mp:

wdata::l? Rf/ag:O wdata::l? Rf/ag:l

pog VPO oy, IV po

Wf/ag::l Rdata:O Wflag::l R'data:O
valid on all architectures valid on some (eg. ARM)

¢ Causal account of executions.
~~ Easy to simulate; allows higher-level reasoning.

Per-execution modelling of the program.
~> No grip on the nondeterministic branching point

Reconciling nondeterminism and causality - Simon Castellan

4/37

The best of both worlds: event structures

Operational Axiomatic
Machines & transitions Execution-level events
Conflict ~ between transitions Causality — on each execution

add causality to transiti(N‘ ‘/globalise events

Event structures
global notion of events (& transitions)
events equiped with ~ and —

Wdata=17

.

wf/ag::l

mp: J7

Rflag=1 ~~~ Rijag=0

b

Rdata=17 Rdata=0 "~ Rdata=17

Reconciling nondeterminism and causality - Simon Castellan 5 /37

The best of both worlds: event structures

Operational Axiomatic
Machines & transitions Execution-level events
Conflict ~ between transitions Causality — on each execution

add causality to transiti(N‘ ‘/globalise events

Event structures
global notion of events (& transitions)
events equiped with ~ and —

Wdata=17

.

wf/ag::l

mp: J7

Rflag=1 ~~~ Rijag=0

bbb

Rdata=17 Rdata=0 "~ Rdata=17

Maximal conflict-free subsets <> Axiomatic executions.

Reconciling nondeterminism and causality - Simon Castellan

5 /37

Outline of the talk

(1) From programs to event structures.
The sequentially consistent case.

(2) A strong data-race-free theorem for TSO.

Which preserves liveness properties.

(3) Relaxing coherence.
Improving over the co of axiomatic semantics.

(4) Beyond assembly: higher-order languages
When labels become moves.

Reconciling nondeterminism and causality - Simon Castellan

6/37

I. FROM PROGRAMS TO EVENT STRUCTURES: NAIVE SC

Wata:=17
l
Wilag:=1 Rflag=0
4 LS
Hmp]] = Rfig=1 Ryata=0 Ryata=17 Wilag:=1
Lo
Riata=17 Weata:=17
4
Wiiag:=1

Reconciling nondeterminism and causality - Simon Castellan 7/37

Our language

We consider a simple imperative language:

ex=rlet+e]... expressions
ti=c|x:=et|r+xt threads
| output e | r < input

| if (0==r¢) {t} {t}

pu=t] ... [t programs

» Features global variables and thread registers
» Input / Output instructions used as “observation points”

Traditional LTS on states (p ©® u: V — N) labeled over:
Ysc = Romk | Wami | Ok | Ii

Reconciling nondeterminism and causality - Simon Castellan 8/37

Event structures
Definition
A Y-event structure is a tuple (E, <g,#g,Iblg : E — X):
» (E,<g): a partial order representing causality
» 4 C E?: binary irreflexive relation representing conflict
+ axioms of finite causes and conflict inheritance.
~ —> is derived from < and ~ from #.

A configuration of E is a subset x C E which is:
» downclosed and conflict-free

% (E), the set of configurations of E is a LTS:
x 2y iff y=xw{e} Albl(e) = a.

Reconciling nondeterminism and causality - Simon Castellan 9/37

Overview of the semantics

Goal: produce [(p ® u)]sc for each state such that:

C([(p©wlsc) = (PO p) as Lsc-LTSs.

4 steps:

(1) Semantics of individual threads

(2) Semantics of programs (without memory)
(3) Semantics of memory
(4)

4) Combining the semantics.

Reconciling nondeterminism and causality - Simon Castellan

10/37

Semantics of individual threads and memory

Individual threads. Using sums and prefixes:

wx::k
[x := k; t]sc = We—k - [t]sc v
[t]sc
R-x:O AnA- Ry Ans L
[r < x;t]sc = Z Ru=n - [t(n)]sc v v
neN [t(0)]sc [t(1)]sc

Programs. Threads are combined using parallel composition

[t]l - I tallse = [tallsc [- - - [] Ttalsc [tisc ... [tallsc

Reconciling nondeterminism and causality - Simon Castellan 11 /37

Semantics of the memory

Storage semantics in SC orders accesses on the same variable.

o R’X:k ~v Wx::O ~ W><::1

Me=k = ¥ v v
My.—k My.—o my.—1

HM]] = My=pu(x) H my.=u(y) ||

[1] is m-labelled (X, = Rk | Weik).

More concretely:
» Events of [u]: consistent history on one variable.

» Configurations of [u]: consistent global history.

[11] works for all multicopy atomics architectures.

Reconciling nondeterminism and causality - Simon Castellan

12 /37

Combining them: interaction states
[(p ® 1)] should combine the behaviours of [p]] and [x]:

wdata::l? Rflag:l
Py, v g €GP o W)

Wflag::l Rdata:l?

Definition
A synchronisation is a tuple X = (X.thr, X .hist, ¢) with:
» X.thr € €([p]) and X.hist € € ([u]).

» o is a label-preserving bijection X.thr N ¥, ~ X.hist.

Reconciling nondeterminism and causality - Simon Castellan 13 /37

Combining them: interaction states
[(p ® 1)] should combine the behaviours of [p]] and [x]:

wdata::l? Rflag:l
Py, v g €GP o W)
Wflag::l Rdata:l?

Definition

A synchronisation is a tuple X = (X.thr, X .hist, ¢) with:
» X.thr € €([p]) and X.hist € € ([u]).
» o is a label-preserving bijection X.thr N ¥, ~ X.hist.

There are two partial orders on X.thr:
S <onr(x) S =S <[p) S S Znem(n) S = 9S S[) ©5-

X is acyclic when <ippx) U <gem(x) is acyclic.

Reconciling nondeterminism and causality - Simon Castellan 13 /37

The prime construction

Acyclic synchro. should be the configurations of [(p ® 1)].
~ Inany E, |E| ~ {x € €(E) | x has a greatest element}.

Theorem (Prime construction, [Hay14])

For a collection of partial orders 2 (closed under prefix), there
exists an event structure Pr(2) such that €(Pr(2)) = Q.

~ Its events are elements of 2 with a greatest element.

We let [[p] * [p] to the be primes of acyclic configurations.

Reconciling nondeterminism and causality - Simon Castellan 14 /37

Correctness

[p] * 1] can be equipped with two orders <., and

Woata:=17
v
wf/ag::l Rf/ag:O
AN
[[mp]] = R-flag:l Rdata=0 Rdata=17 wf/ag::l
v
Rdata=17 Wdata:=17
v
wflag::l

Letting [(p © 1] = [p] * [11] we have: [{p©)] = (p © p).
~ Proof of correctness component by component.

Reconciling nondeterminism and causality - Simon Castellan 15/ 37

II. A sTRONG DRF RESULT FOR TSO

if p race-free on SC:
P FEsc ¢ pFETso ¢

Reconciling nondeterminism and causality - Simon Castellan 16 / 37

Total Store Ordering in one slide [0ss09]
TSO is a memory specification allowing for store buffers.

x=y=0.
x=1y:=1
r<y | s+ x
Allowed r = s = 0.

Usual LTS for TSO equips threads with a buffer in (V' x N)*.
» New instruction, fence: flushes the current thread’s
buffer.
» New labels: X150 := Xsc | fence | BR,.—x | BW,.—.

Our variations:
» Atomic accesses require empty buffers (as fences do)
» Input/Outputs do not require empty buffers.

Reconciling nondeterminism and causality - Simon Castellan 17 / 37

Threads are not sequential anymore

For the thread t = x :=1;r < y, a TSO processor may do:

» Store the write, perform the read, commit the write.
» Commit directly the write and perform the read.

Reconciling nondeterminism and causality - Simon Castellan

18 /37

Threads are not sequential anymore
For the thread t = x :=1;r < y, a TSO processor may do:
» Store the write, perform the read, commit the write.
» Commit directly the write and perform the read.

)

J{BWX;:

1
(r <y, [(x;1)]) A/BWX:ZI\A
4 3 Wt m
(&, [(x, 1)) (r+<y,) I(t, D]rso

P
k e

(.1

\
X

Events W,._; and R,_ should be concurrent in [[(t, [])]rso-

Reconciling nondeterminism and causality - Simon Castellan

18 /37

Threads are not deterministic anymore

For the thread t = x := 1;r < x, a TSO processor may do:

» commit the write, and satisfy the read from memory

» store the write, read from the buffer and only then
commit.

Those transitions are not concurrent.

Y 2 e xl)
lwx::l le:k
(o) (e,)

Events W,.—; and BR,._; should be in conflict in [(¢, [])]rso-

Reconciling nondeterminism and causality - Simon Castellan

19/37

Threads are not deterministic anymore
For the thread t = x := 1;r < x, a TSO processor may do:
» commit the write, and satisfy the read from memory

» store the write, read from the buffer and only then
commit.

Those transitions are not concurrent.

B BWx:—1
(r < x,[6 1)) BRGSO
(160 > Thend meTen 2l
lwx::l le=k [(z, D]rso
(e;[) (1)

Events W,.—; and BR,._; should be in conflict in [(¢, [])]rso-

Reconciling nondeterminism and causality - Simon Castellan 19 /37

Generalised prefix and TSO thread semantics
To represent thread concurrency, we relax the usual prefix:

14
E-RE:g é:ﬁg e when (£,1bl(e")) & R for some €’ < e.
E

where R C X x X is the concurrency relation. For TSO:

R = {(W..—x, e) | e I/O, read on nonatomic y # x}

Reconciling nondeterminism and causality - Simon Castellan

20/37

Generalised prefix and TSO thread semantics
To represent thread concurrency, we relax the usual prefix:

14
E-RE:g é:ﬁg e when (£,1bl(e")) & R for some €’ < e.
E

where R C X x X is the concurrency relation. For TSO:

R = {(W..—x, e) | e I/O, read on nonatomic y # x}

A few interesting rules:

[x == k; t,b] = BWy.—k -r [t, b++(x, k)]

[fence;t,b] =Wy, .—k, ‘R --- ‘R Wx,:=k, ‘R Tence g [t, €]
when b = [(x1, k1), ..., (Xn, kn)]

[r < x;t,0] = (BRyek g [t[r := K], B]) + (Wy:=m g [r < x; £, b'])
when x occurs in b with value k and b = (y, m)++b’.

Reconciling nondeterminism and causality - Simon Castellan 20/ 37

Results about the TSO semantics.

The semantics extends to machines the same way as for SC:

[t]l M te @)]rso = ([talvso [- - || [talvso) * []
where t; of the form (¢, b;)

Theorem
For any TSO machine state m, we have

[m]7so ~ m.

Reconciling nondeterminism and causality - Simon Castellan 21/37

Let us talk about races

Races are concurrent accesses on nonatomic variables.

Definition

A program p is race-free when for all (p ® p) reducing to

(p" ® ') (on SC), then p’ does not have two initial actions on
the same nonatomic variable one of which being a write.

This only allows thread communication on atomic variables:
Lemma
Let p be race-free and e, €' € [(p ® u)]sc such that:
» ¢ and €' are not in conflict and not comparable for <i.,
> e <pem € With no events in between.

Then e and €' are actions on an atomic variable.

Reconciling nondeterminism and causality - Simon Castellan 22 /37

Data-Race-Free theorem
We can generalise the result of [Owel0]:

Theorem
Let p be a race-free program. For any ui:

C([p © w)]7s0) =io €([{p © 11)]sc),

~i.. weak bisimulation where visible events are 10 events.
~ satisfaction of Hennessy-Milner formulas is transferred.

Among HML formulas, there are liveness properties, eg.

Program p inputs a natural number, outputs its double and
then stops.

(NB: Trace based equivalences would allow p to stop after the
input due to a deadlock.)

Reconciling nondeterminism and causality - Simon Castellan 23/37

Qutline of the proof
We first build a partial function ¢ : [p]rso — [p]sc:

BW,.—1
~x~ v
WX =1 Ry:k wx:*l
LY
B, Ry
~ ~a
Wy=1 BRy.=1 Wy=1
~ v v v
Rx=0 ~ Rx=1 \A .. We=1 Ryx=1

This function induces ¥ : €([p]rso) — € ([p]sc).

Lemma)

If p is race-free, 1 lifts to €' ([{(p © 1)] rs0) = € ([{p ©)] sc).
~» The bisimulation is built using this map.

Reconciling nondeterminism and causality - Simon Castellan 24 /37

I11. RELAXING COHERENCE

Weeo1 ~Weoo
v v VS. Weo1 Weoo
wx::2 wx::l

Reconciling nondeterminism and causality - Simon Castellan 25 /37

Coherence is too strict

Our memory cell [u] orders every access to the same variable.
~ Introduces undesired redundancy, eg. in mp:

wdata::17
%7 wdata::17
Whag:=1 Rflag=0 47
%7 %7 \A wf/ag::l
Riag=1 Rdata=0 Riata=17 ~ Whagi=1 47
$ %7 Rlag=1 ~~ Rilag=0

Rdata=17 Woata=17 47 J7 \

Rdata=17 Rdata=0 ~ Rdata=17
wf/ag::l

Semantics of (1) Optimised version

~+ Same outcomes but fewer configurations on the right.

Reconciling nondeterminism and causality - Simon Castellan 26 /37

Coherence is too strict

Our memory cell [u] orders every access to the same variable.
~ Introduces undesired redundancy, eg. in mp:

wdata::17
%7 wdata::17
Whag:=1 Rflag=0 47
%7 %7 \A wf/ag::l
Riag=1 Rdata=0 Riata=17 ~ Whagi=1 47
$ %7 Rlag=1 ~~ Rilag=0

Rdata=17 Woata=17 47 J7 \

Rdata=17 Rdata=0 ~ Rdata=17
wf/ag::l

Semantics of (1) Optimised version

~+ Same outcomes but fewer configurations on the right.

Goal: Given E, build E,, a more compact version of E x [u]?

Reconciling nondeterminism and causality - Simon Castellan 26 /37

Our take on candidates

A candidate is a -partial order where reads are justified:

Wy:=1 Wy.=2 Wi:=1 Wi:=2
4 N
Rx:2 R-x:2

C1 C2

Reconciling nondeterminism and causality - Simon Castellan 27 /37

Our take on candidates

A candidate is a -partial order where reads are justified:

Wy:=1 Wy.=2 Wy=1 < Wi:=2
4 N4
Rx:2 R-x:2
C1 C2
valid invalid

C is valid when all linearisations of writes are SC-executable.

Definition

An execution of x € €(E) is a valid candidate C such that:
(1) |x| =1C] and s<gs' =s<cs fors,s’ex

(2) In C, 1/O actions are all comparable.

(3) It is minimal: there are no C’ satisfying (1) and (2) with
<cC=c.

Reconciling nondeterminism and causality - Simon Castellan

27 /37

The event structure E,

We can construct an event structure based on executions:

Theorem

There exists an event structure E,, whose maximal
configurations correspond to pairs (x, C) of a maximal
configuration of E and C an execution of x.

Non-incremental: need the maximal configurations of E.

Theorem

> trio(Eu) = trio(E * [1])
> E, simulates E * [p].

E * [1] does not simulate E,: choices are made later in E,,.

Reconciling nondeterminism and causality - Simon Castellan 28 /37

Approximating the executions
How to compute the executions of x € €(E) 7

1. Compute the possible justifications for reads in x. ~» A
set of candidates C

2. For each C, add causal links to compute the possible
executions augmenting C.

Reconciling nondeterminism and causality - Simon Castellan 29 /37

Approximating the executions
How to compute the executions of x € €(E) 7
1. Compute the possible justifications for reads in x. ~» A
set of candidates C
2. For each C, add causal links to compute the possible
executions augmenting C.

A simple heuristic, add links in the following cases:

wx::k’ D> Wy =k W%:k' . in:k
S ~”/ ~a X

Rx:k -7 RX:k -7 > wx::k”

(Heuristic independently developed by Luc Maranget)
This heuristic can be implemented in Herd.

~ Ok for simple cases, but not for complicated programs...

Reconciling nondeterminism and causality - Simon Castellan 29 /37

IV. BEYOND ASSEMBLY: HIGHER-ORDER LANGUAGES

Reconciling nondeterminism and causality - Simon Castellan 30/37

Functions and LTS

What about code calling foreign functions?
void redButton (void) {
if (amIPresident())

launchMissiles();
}
This can be described by a LTS using call /return events:

call(amIPresident()) \L
/N
call(launchMissiles):L \‘Lret()
\.L .
ret()4

Reconciling nondeterminism and causality - Simon Castellan 31/37

Functions and LTS
What about code calling foreign functions?
void redButton (void) {
if (amIPresident())
launchMissiles();

+

This can be described by a LTS using call /return events:

call(amIPresident)
a— T
v v

call(launchMissiles) ret()

%
%

ret()

...0r as an event structure.

Reconciling nondeterminism and causality - Simon Castellan

31/37

Labels organise themselves as games
» Labels are now polarised Context/Program:
ReadReq,
Ro—k ~ v
ReadAnsy

» Labels have rules: “Do not return before you are called.”

~~ Labels organise themselves in games: polarised forests.

call(amIPresident) call(launchMissiles)
o N v
ret(true) ret(false) ret()

A rule-preserving trace of a game is called a play.

Reconciling nondeterminism and causality - Simon Castellan 32/37

Labels organise themselves as games
» Labels are now polarised / Program:

ReadReq,
R-x:k ~ ﬁ
» Labels have rules: “Do not return before you are called.”
~~ Labels organise themselves in games: polarised forests.

call(amIPresident) call(launchMissiles)

& N v

A rule-preserving trace of a game is called a play.

~~ Game semantics pioneered the study of programs as sets
of plays on games (strategies) [HO00, AJMOO].

Reconciling nondeterminism and causality - Simon Castellan 32/37

Parallel functions as event structures

[RW11] used event structures to represent strategies:

call(f,0) call(f,1)

Y

int sum(void) { Y Y
return £(0) + £(1);|| =

} T~ "

~> Opens the possibility to model open higher-order
concurrent programs with event structures.

However, major restriction, linearity: in each configuration,
each move must be played once!

Reconciling nondeterminism and causality - Simon Castellan 33/37

Nonlinearity

What if Player wants to be nonlinear?
~~ To call a function twice (as in the previous slide)

Following [AJMO00], we add copy indices to moves:

game A ~» game !A where moves are duplicated w times.

The previous example becomes:
11(f,0 11(f,1

int sum(void) { @ i Jo e i h

return £(0) + £(1);| =

} S ~
ret(i +.j)<p,q>

Reconciling nondeterminism and causality - Simon Castellan 34 /37

A model of IPA

These considerations lead to:

Theorem (C., Clairambault, Winskel)

These expanded games and strategies form a model of
higher-order concurrent and nondeterministic computation.

Model highlights the complicated causal patterns of such
programs:

Tint shy(void){

static int timesCalled = 0;
timesCalled ++;

if (timesCalled == 2) return 0;

else while(true);

Reconciling nondeterminism and causality - Simon Castellan 35 /37

A model of IPA

These considerations lead to:

Theorem (C., Clairambault, Winskel)

These expanded games and strategies form a model of
higher-order concurrent and nondeterministic computation.

Model highlights the complicated causal patterns of such
programs:

Tint shy(void){
static int timesCalled = 0;

timesCalled ++;

B4

(=
(=R

if (timesCalled == 2) return 0;

else while(true);

Reconciling nondeterminism and causality - Simon Castellan 35 /37

A model of IPA

These considerations lead to:

Theorem (C., Clairambault, Winskel)

These expanded games and strategies form a model of
higher-order concurrent and nondeterministic computation.

Model highlights the complicated causal patterns of such

programs:

Tint shy(void){
static int timesCalled = 0;

timesCalled ++;

else while(true);

if (timesCalled == 2) return 0;

Q

0~~0~~0

Reconciling nondeterminism and causality - Simon Castellan 35 /37

Related work

Weak memory and event structures.
» Brookes & Kavanagh's model of TSO with pomsets.

» Pichon & Sewell’s operational semantics on event
structures

> Jeffrey & Riely’s axiomatic model using event structures

Game Semantics for concurrency.
» Laird, and Ghica & Murawski's models using interleaving.

» Tsukada & Sakayori's model of concurrency using set of
pomsets.

» Hirschowitz's model using presheaves over spans.

Reconciling nondeterminism and causality - Simon Castellan 36 /37

A rich semantic universe based on event structures
Extensions. Model is extensible and has been extended to:
» continuous probabilities (Paquet, Winskel)
» quantum computation (Clairambault, de Visme, Winskel)

Ongoing work. In many different contexts:
» probabilistic programming
» dependences of logical rules
» message-passing concurrency

Research agenda.

» Investigate more applied models (ARM, C11), ...

» How to have a finite representation of these two issues:
» recursion (depth)
» unbounded contexts (breadth)

» Implement such models in a flexible way (a la Herd), ...

Reconciling nondeterminism and causality - Simon Castellan 37 /37

Samson Abramsky, Radha Jagadeesan, and Pasquale
Malacaria.

Full abstraction for PCF.

Information and Computation, 163(2):409-470, 2000.

Jonathan Hayman.

Interaction and causality in digital signature exchange
protocols.

In Matteo Maffei and Emilio Tuosto, editors, Trustworthy
Global Computing - 9th International Symposium, TGC
2014, Rome, Italy, September 5-6, 2014. Revised Selected
Papers, volume 8902 of Lecture Notes in Computer
Science, pages 128-143. Springer, 2014.

Martin Hyland and Luke Ong.
On full abstraction for PCF.
Information and Computation, 163:285-408, 2000.

Scott Owens, Susmit Sarkar, and Peter Sewell.

Reconciling nondeterminism and causality - Simon Castellan 37 /37

A better x86 memory model: x86-tso.

In Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, pages
391-407, 20009.

Scott Owens.

Reasoning about the implementation of concurrency
abstractions on x86-tso.

In ECOOP 2010 - Object-Oriented Programming, 24th
European Conference, Maribor, Slovenia, June 21-25,
2010. Proceedings, pages 478-503, 2010.

Silvain Rideau and Glynn Winskel.

Concurrent strategies.

In Proceedings of the 26th Annual IEEE Symposium on
Logic in Computer Science, LICS 2011, June 21-24, 2011,
Toronto, Ontario, Canada, pages 409-418, 2011.

Reconciling nondeterminism and causality - Simon Castellan 37 /37

