Session Types and Game Semantics Synchrony and Asynchrony

<u>Simon Castellan¹</u>, Pierre Clairambault², Nobuko Yoshida¹

¹Imperial College London ²LIP, ENS Lyon

14 april 2018 GaLoP 2018

The π -calculus [MPW92]

The π -calculus describes agents communicating through **channels**:

P, Q ::=0 | (P | Q) $| (\nu ab)P \qquad \text{restriction}$ $| \bar{a}! \ell \langle u \rangle. P \qquad \text{output}$ $| \sum_{i \in I} a? \ell(x_i). P_i \quad \text{input}$ $| P + Q \qquad \text{nondet. choice}$

Communication: data (ℓ) and channels (u).

Short-hands: $\bar{a}\langle u \rangle := \bar{a}! \star \langle \vec{u} \rangle$ $a(x) := a? \star (x)$

Game semantics for the π -calculus

Existing models:

- Laird [Lai05] refined by Tsukada & Sakayori [ST17] (for the asynchronous fragment)
- ▶ Hirschowitz *et. al.* [EHS15]

 \rightsquigarrow In this talk, focus on analyzing the first line of interpretation.

Game semantics for the π -calculus

Existing models:

- Laird [Lai05] refined by Tsukada & Sakayori [ST17] (for the asynchronous fragment)
- ▶ Hirschowitz *et. al.* [EHS15]

 \rightsquigarrow In this talk, focus on analyzing the first line of interpretation.

Basic idea: interpret channels as an effect like references:

$$\llbracket \ddagger T \rrbracket = \llbracket T \rrbracket^{\perp} \times \llbracket T \rrbracket$$
$$\llbracket (\nu a) P \rrbracket = \llbracket P \rrbracket \odot \operatorname{cc}$$

Asynchrony: game semantics

Concurrent game semantics is traditonally asynchronous:

 $\boldsymbol{c}_{A} \odot \sigma = \sigma \Longrightarrow \sigma$ courteous [MM07, RW11]

This forces some equations in the model:

 $\llbracket \bar{a}\langle u \rangle . \bar{b}\langle v \rangle . P \rrbracket = \llbracket \bar{b}\langle v \rangle . \bar{a}\langle u \rangle . P \rrbracket \qquad \llbracket a(x) . b(y) . P \rrbracket = \llbracket b(y) . a(x) . P \rrbracket$

 \rightsquigarrow Limits adequacy results . . .

Asynchrony: π -calculus [HT91]

Asynchrony in π -calculus: no continuation after sends. $\rightarrow \bar{a}\langle u \rangle . \bar{b}\langle v \rangle$ is not a term!

Moreover, in asynchronous π -calculus:

$$a(x). b(y). P \simeq_{may} b(y).a(x).Q$$

 \rightsquigarrow Models of [Lai05, ST17] adequate for may.

Asynchrony: π -calculus [HT91]

Asynchrony in π -calculus: no continuation after sends. $\rightarrow \bar{a}\langle u \rangle . \bar{b}\langle v \rangle$ is not a term!

Moreover, in asynchronous π -calculus:

$$a(x). b(y). P \simeq_{may} b(y).a(x).Q$$

 \rightsquigarrow Models of [Lai05, ST17] adequate for may.

However,

$$a(x). b(y). P \not\simeq_{must} b(y). a(x). Q$$

No adequacy possible for non-angelic testing equivalences ...

 \Rightarrow Need to take synchrony seriously!

Session types [HVK98]

Typing discpline where types are protocols:

$$S, T ::= end$$
$$| \oplus_{i \in I} \ell_i(S_i). T_i$$
$$| \underbrace{\&_{i \in I} \ell_i(S_i). T_i}$$

Typing $\vdash P :: a_1 : S_1, \ldots, a_n : S_n$ ensures protocol preservation.

$$\frac{\vdash P: a: T_k, \Delta}{\vdash a! \ell_k \langle u \rangle. P :: a: \oplus_{i \in I} \ell_i(S_i). T_i, \Delta, u: S_k}$$

Duality expresses compatible endpoints:

$$\frac{\vdash P :: \Delta, a : S, b : S^{\perp}}{\vdash (\nu a b) P :: \Delta}$$

I. Session types into concurrent games

Types as games

In concurrent games, games are polarized event structures:

$$\mathbb{B} \implies \mathbb{B}$$

$$q^{\Delta} \xrightarrow{q} tt \sim ff$$

$$tt \sim ff$$

Types as games

In concurrent games, games are **polarized event structures**:

$$\begin{array}{ccc} \mathbb{B} & \Rightarrow & \mathbb{B} \\ & & & & & \\ & & &$$

Interpretation of types is given by induction:

$$\begin{bmatrix} \&_{i \in I} \ell_i(S_i) . T_i \end{bmatrix} = \sum_{i \in I} \ell_i \cdot (\llbracket S_i \rrbracket \parallel \llbracket T_i \rrbracket)$$
$$\llbracket \oplus_{i \in I} \ell_i(S_i) . T_i \rrbracket = \sum_{i \in I} \ell_i \cdot (\llbracket S_i \rrbracket^{\perp} \parallel \llbracket T_i \rrbracket)$$

Types as games

In concurrent games, games are polarized event structures:

$$\mathbb{B} \Rightarrow \mathbb{B}$$

$$\underset{\substack{q \ \Delta^{-} \ b' \ \forall}}{q \ \Delta^{-} \ tt \ \cdots \ ff}} = \begin{bmatrix} \underbrace{\&_{i \in \{*\}} i(\oplus_{j \in \{*\}} j(\underbrace{\&_{b \in \{tt, ff\}} b}))}_{\oplus_{b' \in \{tt, ff\}} b'} \end{bmatrix}$$

$$\underset{tt \ \cdots \ ff}{\oplus}$$

Interpretation of types is given by induction:

$$\begin{bmatrix} \&_{i \in I} \ell_i(S_i) . T_i \end{bmatrix} = \sum_{i \in I} \ell_i \cdot (\llbracket S_i \rrbracket \parallel \llbracket T_i \rrbracket)$$
$$\llbracket \oplus_{i \in I} \ell_i(S_i) . T_i \rrbracket = \sum_{i \in I} \ell_i \cdot (\llbracket S_i \rrbracket^{\perp} \parallel \llbracket T_i \rrbracket)$$

Lemma

Every tree-like game is the interpretation of a type.

Processes as strategies

Interpretation is by induction, eg.

$$\left\| \frac{\vdash P : a : T_k, \Delta \quad k \in I}{\vdash a! \ell_k \langle u \rangle. P :: a : \bigoplus_{i \in I} \ell_i(S_i). T_i, \Delta, u : S_k} \right\| = \ell_k \cdot (\boldsymbol{c}_{[S_k]} \parallel [P]).$$

Restriction uses duality:

$$\left[\!\!\left[\frac{\vdash P :: \Delta, a : S, b : S^{\perp}}{\vdash (\nu a b) P :: \Delta}\right]\!\!\right] = [\![P]\!] \odot \boldsymbol{c}_{[\![S]\!]}.$$

Processes as strategies

Interpretation is by induction, eg.

$$\left\| \frac{\vdash P : a : T_k, \Delta \quad k \in I}{\vdash a! \ell_k \langle u \rangle. P :: a : \bigoplus_{i \in I} \ell_i(S_i). T_i, \Delta, u : S_k} \right\| = \ell_k \cdot (\boldsymbol{c}_{[S_k]} \parallel [P]).$$

Restriction uses duality:

$$\left[\frac{\vdash P :: \Delta, a : S, b : S^{\perp}}{\vdash (\nu ab) P :: \Delta} \right] = \llbracket P \rrbracket \odot \boldsymbol{c}_{\llbracket S \rrbracket}$$

In general **[***P***]** is **not** courteous, however we still get a sound model:

Lemma If $P \longrightarrow Q$ then $\llbracket P \rrbracket \lesssim \llbracket Q \rrbracket$.

Interestingly, if we have any strategy:

Interestingly, if we have any strategy:

Interestingly, if we have any strategy:

 σ' is more tree-like than σ

Interestingly, if we have any strategy:

 σ' is more tree-like than σ and:

$$\sigma' = \sigma \odot \llbracket \texttt{join} \rrbracket.$$

Interestingly, if we have any strategy:

 σ' is more tree-like than σ and:

$$\sigma' = \sigma \odot \llbracket \texttt{join} \rrbracket.$$

Theorem Every $\sigma : \llbracket \Delta \rrbracket$ is the interpretation of a process.

Inadequacy

 $(\nu a \bar{a})(\nu u \bar{u})(\nu u' \bar{v}')(\bar{a}\langle u, v \rangle \mid \bar{u}.\bar{v} \mid a(x, y) y.x)$ deadlocks:

Inadequacy

 $(\nu a \bar{a})(\nu u \bar{u})(\nu u' \bar{v}')(\bar{a}\langle u, v \rangle \mid \bar{u}.\bar{v} \mid a(x, y) y.x)$ deadlocks:

In the model, **copycat** deals with communication and adds delay:

→ No deadlock anymore.

Inadequacy

 $(\nu a \bar{a})(\nu u \bar{u})(\nu u' \bar{v}')(\bar{a}\langle u, v \rangle \mid \bar{u}.\bar{v} \mid a(x, y) y.x)$ deadlocks:

In the model, **copycat** deals with communication and adds delay:

→ No deadlock anymore.

II. COURTEOUS PROCESSES

A process P is courteous when $\llbracket P \rrbracket$ is courteous.

Lemma

1. If $P \longrightarrow Q$ and P is courteous, then Q is courteous

2. If
$$\llbracket P \rrbracket \lesssim \tau$$
 then $P \longrightarrow Q$ with $\llbracket Q \rrbracket = \tau$

3. Every finite courteous $\sigma : \llbracket \Delta \rrbracket$ is the interpretation of a courteous P

A strong link

From these results there is a strong correspondence between:

- The category of session types and courteous processes
- ► The category of games and strategies of [RW11, CCHW18]

 \rightsquigarrow Correspondence seems to play well with bisimulation & obs. eq.

A strong link

From these results there is a strong correspondence between:

- The category of session types and courteous processes
- ► The category of games and strategies of [RW11, CCHW18]
- \rightsquigarrow Correspondence seems to play well with bisimulation & obs. eq.

Hence:

- Session types and process provide a syntax for strategies
- Equivalent to interpret a language inside one or the other. (Generalizes [HO95] and [BHY01] to true concurrency and non-innocence)

III. COINCIDENT STRATEGIES

What is going on

Async forwarder. Given S, there is $\vdash [x = y] :: x : S, y : \overline{S}$ with

$$\llbracket [x=y] \rrbracket = \boldsymbol{c}_{\llbracket S \rrbracket}.$$

What is going on

Async forwarder. Given S, there is $\vdash [x = y] :: x : S, y : \overline{S}$ with

$$\llbracket [x = y] \rrbracket = \boldsymbol{c}_{\llbracket S \rrbracket}.$$

Our model interprets free output indirectly, indeed:

$$\llbracket \bar{a} \langle u \rangle \rrbracket = \llbracket (\nu x y) (\bar{a} \langle x \rangle \mid [y = u]) \rrbracket.$$

However $(\nu xy)(P(x) | [y = u]) \approx P(u)$ only if P is courteous.

 \rightsquigarrow Change copycat to allow "coincidences" between x and y.

Coincident event structures

In event structures, event occurs separately of the others:

$$\emptyset \subseteq \{a_1\} \subseteq \{a_1, a_2\} \subseteq \ldots$$

¹Known as *Completeness* and *Stability*.

⁽A)synchrony in game semantics · C., Pierre Clairambault, Nobuko Yoshida

Coincident event structures

In event structures, event occurs separately of the others:

$$\emptyset \subseteq \{a_1\} \subseteq \{a_1, a_2\} \subseteq \dots$$

Definition

A coincident event structure is a pair (E, \mathcal{E}) satisfying:¹

• if $x, y \in \mathcal{E}$ bounded in \mathcal{E} then $x \cup y \in \mathcal{E}$ and $x \cap y \in \mathcal{E}$.

Covering chains are not sequences of events but of coincidences

$$\emptyset \subseteq X_1 \subseteq X_1 \cup X_2 \subseteq \ldots$$

¹Known as *Completeness* and *Stability*.

⁽A)synchrony in game semantics C., Pierre Clairambault, Nobuko Yoshida

Coincident event structures

In event structures, event occurs separately of the others:

$$\emptyset \subseteq \{a_1\} \subseteq \{a_1, a_2\} \subseteq \dots$$

Definition

A coincident event structure is a pair (E, \mathcal{E}) satisfying:¹

• if $x, y \in \mathcal{E}$ bounded in \mathcal{E} then $x \cup y \in \mathcal{E}$ and $x \cap y \in \mathcal{E}$.

Covering chains are not sequences of events but of coincidences

$$\emptyset \subseteq X_1 \subseteq X_1 \cup X_2 \subseteq \ldots$$

Given a game A, we can form the coincident copycat:

$$\mathsf{ccc}_\mathsf{A} = (\mathsf{A}^\perp \parallel \mathsf{A}, \{x \parallel x \mid x \in \mathscr{C}(\mathsf{A})\})$$

proc⊥ ∥ proc run ----- run ☆ ☆ ☆ done ----- done

¹Known as *Completeness* and *Stability*.

Coincident strategies

Definition

A coincident strategy on A is a map $S \to A$ such that its coincidence are singletons or of the form $\{a, b\}$.

~ A category without requiring courtesy!

Coincident strategies

Definition

A coincident strategy on A is a map $S \rightarrow A$ such that its coincidence are singletons or of the form $\{a, b\}$. $\sim A$ category without requiring courtesy!

We can now change the interpretation of free output:

$$\left[\frac{\vdash P : a : T_k, \Delta \quad k \in I}{\vdash a! \ell_k \langle u \rangle. P :: a : \bigoplus_{i \in I} \ell_i(S_i). T_i, \Delta, u : S_k} \right] = \ell_k \cdot (\operatorname{ccc}_{\llbracket S_k \rrbracket} \| \llbracket P \rrbracket).$$

~ An **adequate interpretation** of synchronous session types. However: semantic space too broad (no finite definability).

But: diagram does not commute

Idea: add acknowledgements to protocols

Definition

1. Unfold the protocol: $A \mapsto \uparrow A$

$$\begin{cases} \mathsf{a} & \mapsto & \forall \\ \mathsf{a} & \mathsf{ck}_{\mathsf{a}} \\ & \mathsf{ack}_{\mathsf{a}} \\ \mathsf{a} & \mapsto & \forall \\ \mathsf{ack}_{\mathsf{a}} \\ \mathsf{a} & \mapsto & \forall \\ & \mathsf{ack}_{\mathsf{a}} \end{cases}$$

2. Unfold the strategies: $\sigma \rightarrow \uparrow \sigma$

$$a \rightarrow b \qquad \mapsto \qquad \begin{array}{c} \operatorname{req}_{a} \rightarrow \operatorname{req}_{b} \\ \downarrow \qquad \downarrow \\ \operatorname{ack}_{a} \qquad \operatorname{ack}_{b} \\ \operatorname{req}_{a} \rightarrow \operatorname{req}_{b} \\ \downarrow \\ \operatorname{ack}_{a} \leftarrow \operatorname{ack}_{b} \end{array}$$

Properties

Encoding is injective:

configurations of $\sigma \simeq {\bf complete}$ configurations of $\uparrow \sigma$

Should preserve and reflect weak bisimulation

 $\sigma \approx \tau \qquad \text{iff} \uparrow \sigma \approx \uparrow \tau$

► Characterisation of the image: well-acknowledging strategies.
~→ Coincident strategies ≅ subcategory of courteous strategies

Summary & Perspectives

- We show a tight correspondance between Session Types and Game Semantics
- Benefits both communities:
 - Provide a precise syntactic description of concurrent strategies
 - Describes the causal behaviour of session processes

Future work.

- Extend to the nonlinear setting.
 ~ A language for innocent concurrent strategies.
- Extend session types to non-tree-like protocols.

Martin Berger, Kohei Honda, and Nobuko Yoshida. Sequentiality and the pi-calculus. In TLCA, pages 29–45, 2001.

 Simon Castellan, Pierre Clairambault, Jonathan Hayman, and Glynn Winskel.
 Non-angelic concurrent game semantics.
 2018.
 Accepted at FOSSACS'18.

 Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller.
 An intensionally fully-abstract sheaf model for pi.
 In Lawrence S. Moss and Pawel Sobocinski, editors, 6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands, volume 35 of LIPIcs, pages 86–100. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2015.

J. M. E. Hyland and C.-H. Luke Ong. Pi-calculus, dialogue games and PCF.

In Proceedings of the seventh international conference on Functional programming languages and computer architecture, FPCA 1995, La Jolla, California, USA, June 25-28, 1995, pages 96-107, 1995,

📑 Jim Laird.

A game semantics of the asynchronous *pi*-calculus. In CONCUR 2005 - Concurrency Theory, 16th International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005, Proceedings, pages 51-65, 2005.

- Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence without alternation. In CONCUR 2007 - Concurrency Theory, 18th International Conference, pages 395-411, 2007.
- Silvain Rideau and Glynn Winskel.
 - Concurrent strategies.

In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 409-418, 2011.

🔋 Ken Sakayori and Takeshi Tsukada.

A truly concurrent game model of the asynchronous π -calculus.

In Proceedings of the 20th International Conference on Foundations of Software Science and Computation Structures -Volume 10203, pages 389–406, New York, NY, USA, 2017. Springer-Verlag New York, Inc.