A game semantics of fork(II)

Simon Castellan(joint work with Pierre Clairambault)
GalLoP 2015

Introduction — Concurrent Games

» Rideau and Winskel developed a framework for game
semantics based on event structures.

» We recently extended this to CHO, a “truly concurrent”
extension of HO games.

» Two approaches to tame the broad mathematical space:
» Cutting down the space of strategies to get definability results
for increasing powerful languages.
(Full abstraction for parallel stateless languages.)
» Designing very expressive languages to understand the model
operationally

Introduction — Concurrent Games

» Rideau and Winskel developed a framework for game
semantics based on event structures.

» We recently extended this to CHO, a “truly concurrent”
extension of HO games.

» Two approaches to tame the broad mathematical space:
» Cutting down the space of strategies to get definability results
for increasing powerful languages.
(Full abstraction for parallel stateless languages.)
» Designing very expressive languages to understand the model
operationally (this talk).

|. Presentation of CHO

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:
» set of plays — one labelled event structure

» behaviour against: all Opponents — a most general one

lor: B, Bo B

£f, tty

\@gﬁ

lor is sequential innocent : the strategy is an O-branching tree.
tree = no merges = no O-merges + no P-merges

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:
» set of plays — one labelled event structure

» behaviour against: all Opponents — a most general one

lor: B, Bo B

£f, tt,

\@gﬁ

lor is sequential innocent : the strategy is an O-branching tree.
tree = no merges = no O-merges + no P-merges

Overview of concurrent games

Difference between usual game semantics and the concurrent
games:

» set of plays — one labelled event structure

» behaviour against: all Opponents — a most general one

» Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games

Difference between usual game semantics and the concurrent
games:

» set of plays — one labelled event structure

» behaviour against: all Opponents — a most general one

» Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games

Difference between usual game semantics and the concurrent
games:

» set of plays — one labelled event structure

» behaviour against: all Opponents — a most general one

» Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games

Difference between usual game semantics and the concurrent
games:

» set of plays — one labelled event structure

» behaviour against: all Opponents — a most general one

» Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games

Difference between usual game semantics and the concurrent
games:

» set of plays — one labelled event structure

» behaviour against: all Opponents — a most general one

» Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P-merging

Event structures

Definition (Event structures)

Event structures are tuples (E, <,) where: :
» (E,<)is a partial order m
> # C E? is an irreflexive symmetric relation i
satisfying conflict inheritance: l l

eie’ & e’ < e’ == efle”

» Configurations of E (¢(E)): Finite downclosed sets of
pairwise-compatible elements of E

» An arena (A,F, pol) (alternating forest) can be seen as an
event structure (A, (F)*,0) with a polarity labelling.

It is negative when all its minimal events are.

If Ais an arena, AT is obtained from A by reversing the
polarities.

Strategies

Definition (Pre-strategies) B = q-

A pre-strategy on an arena A is an event B/ \A
structure S along with a labelling function o ££F tth
o0 :S — A such that

> x €6(S) = ox € €(A) S =

» o is injective on configurations W

This exactly means that o is a map of
event structures.

A strategy 0 : S — A is a pre-strategy satisfying:
1. courtesy: in S the extra causal links are of the form © — @.

2. receptivity: any negative extension in A of a configuration
reached by o has a unique lifting in S.

Strategies

Definition (Pre-strategies)
A pre-strategy on an arena A is an event

structure S along with a labelling function
o :S — Asuch that

> x €6(S) = ox € €(A) .
» o is injective on configurations - A/ \A

This exactly means that o is a map of £ VW gt
event structures.

A strategy 0 : S — A is a pre-strategy satisfying:
1. courtesy: in S the extra causal links are of the form © — @.

2. receptivity: any negative extension in A of a configuration
reached by o has a unique lifting in S.

To draw a strategy we draw the corresponding event structure with
labels induced by o.

Expanded arenas

Given an arena A, form an arena !A:

» events: (a€ A, [a] = N) U
o gives a copy index to - -
dependencies of the label a. B/ngj B/Zi&
+ Y+ + Y+
> Ordering: (a,Oé) S (a/,o/) When ()O ()1 ()O ()1

a<a and aCd.

Expanded arenas

Given an arena A, form an arena !A:

» events: (a€ A, [a] = N) U
o gives a copy index to - -
dependencies of the label a. B/ngj KZ&\A
+ Y+ + Y+
> Ordering: (a,O{) S (a/,a/) When ()O ()1 ()0 ()1

a<a and aCd.

A symmetry of !A is an order-isomorphism between two
configurations of !A preserving labels.

Two strategies 0 : S — 1A and 7: T — A “are isomorphic up to
copy indices” when there is an iso ¢ : S = T such that

0y = {(os,7(ps)) | s € x}

is a symmetry on A for x € €(S).

Weak equivalence and uniformity

» “isomorphic up to copy indices’ is not a congruence:

bad : U——————=U

()2J+1

» To overcome this, we introduced:
» ~-strategies o : S — A that are uniform wrt Opponent copy
indices (method similar as that of AJM games).
» a congruence (weak equivalence) of ~-strategies.

The category CHO

» As usual to get a CCC one needs to ask that our strategies
behave the same way no matter how many times they are
called.

> In our setting, we say that o : S — A is single-threaded
when the subsets of S lying over two distinct minimal
questions are disjoint and compatible.

» Then we get a cartesian closed category given by
» Objects: negative arenas
» Morphism from A to B: Negative single-threaded
~-strategies playing on !(A = B) up to weak equivalence.
(where A = B is the usual arrow construction on arenas).

What is this “most general” Opponent?

» In our setting, interaction of o : & — !A against
7:T — (1A)* is given by pullback of maps of event
structures (without polarities) of o along 7:

c®RT:S®T = 1A

(generalized intersection)

» The pullback of o along the full injection !A < A is
isomorphic to o. — It is the "most general’ Opponent.

» The full injection satisfies the conditions of ~-strategy...what
does it mean?
On B (before expansion):

B

q
™
ffg ttt

» Answers concurrently twice to the same question.

fork(II)

11/3/71 SYS FORK (II)
NAME fork -- spawn new process

SYNOPSIS sys fork / fork = 2.
(new process return)
(0old process return)

DESCRIPTION fork is the only way new processes are created. The new
process’s core image is a copy of that of the caller of

fork the only distinction is the return location and the

fact that r0 in the old process contains the process ID of
the new process. This process ID is used by wait.

FILES

SEE ALSO sys wait, sys exec

DIAGNOSTICS The error bit (c—bit) is set in the old process if a new
process could not be created because of lack of swap
space.

BUGS See wait for a subtle bug in process destruction.

OWNER ken, dmr

II. The fork-calculus

Syntax of the fork calculus

PCF
+ synchronous message-passing
+ a monoid structure on each base type.

A, B ::=nat | bool | unit (base types)
| chan (channel types)
| A= B (arrow types)
tbus=x|Mxt|tulY (simply typed A-calculus + fixpoint)
| (PCF constants)
| t;u | if t then u else v (destructors)
| new a in t (channel creation)
| sendtu | recvt (operations on channels)
|] u|exit (forks — only on base types)

Called Idealized CSP by Jim Laird.

Semantics

Very similar in spirit to the model by Jim Laird based on
non-alternating HO games (with concurrency pointers).

Interpretation of forks. Interpretation of channels.
Interpretation of ||: > [chan] = [nat] x [unit]"
X—X—X

» send and recv: usual accessors

q9. » new ¢ in t inter
preted by
N

q q pre-composition with a
7 J;_ pre-strategy
x y\A\A newchan : [chan].
x5y
We have soundness. If t: X eventually evaluates to
x1 || .|| xa || t’ then [t] contains one positive move for each x;.

The “control operator” flavour of fork

We can use the fork-calculus to make the previous observations
formal.

» As noticed by Jim Laird, the term:
let call/cc f =
new « in
Y (Ap. p || recv o) || £ (Ax. send « x; exit)

of the fork calculus has a denotation observationally equivalent
to the usual strategy for call/cc.

» We deduce that “Every thread is well-bracketed” is not stable
under composition.

» We also have the converse direction: fork is definable from
call/cc and a join operator:

let fork = callcc (Ak. join (k tt) (k £ff))

Is call/cc really call/cc?

let call/cc f =
new « in
Y (Ap. p || recv o) ||
f (Ax. send a x; exit)

Infinitely many races.

(((nat—>B)—rnat)——>nat)

T
q+A/
-

Is call/cc really call/cc?

(((nat—>B)—rnat)——>nat)
q
let Call/CC f = ng,Q/
new « in - Co
— q :
Y (Ap. p || recv o) || +A/ ».
f (Ax. send a x; exit) C@ :
n*ﬂ
Infinitely many races. Visible divergences tracking:
g
i i — X &
if choice then 2 else (3 || 2) 2T%28L
g
3112 — X M

Conclusion and perspectives

» Conclusion: CHO can model very complex non-deterministic
and concurrent behaviour

» Future works:
» Take into account hidden divergences:
if choice then tt else Q # tt

» Factorization results (through the addition of a program order
akin to Laird's concurrency pointers)

» Other work: conditions for extensional definability (parallel
PCF, PCF+parallel-or)

	Presentation of `39`42`"613A``45`47`"603ACHO
	The fork-calculus

