A game semantics of fork(II)

Simon Castellan(joint work with Pierre Clairambault) GaLoP 2015

Introduction - Concurrent Games

- Rideau and Winskel developed a framework for game semantics based on event structures.
- We recently extended this to CHO, a "truly concurrent" extension of HO games.
- Two approaches to tame the broad mathematical space:
- Cutting down the space of strategies to get definability results for increasing powerful languages.
(Full abstraction for parallel stateless languages.)
- Designing very expressive languages to understand the model operationally

Introduction - Concurrent Games

- Rideau and Winskel developed a framework for game semantics based on event structures.
- We recently extended this to CHO, a "truly concurrent" extension of HO games.
- Two approaches to tame the broad mathematical space:
- Cutting down the space of strategies to get definability results for increasing powerful languages.
(Full abstraction for parallel stateless languages.)
- Designing very expressive languages to understand the model operationally (this talk).

I. Presentation of CHO

Overview of concurrent games

Difference between usual game semantics and the concurrent games:

- set of plays \rightarrow one labelled event structure
- behaviour against: all Opponents \rightarrow a most general one

lor is sequential innocent: the strategy is an O-branching tree. tree $=$ no merges $=$ no O-merges + no P-merges

Overview of concurrent games

Difference between usual game semantics and the concurrent games:

- set of plays \rightarrow one labelled event structure
- behaviour against: all Opponents \rightarrow a most general one

lor is sequential innocent : the strategy is an O-branching tree. tree $=$ no merges $=$ no O-merges + no P -merges

Overview of concurrent games

Difference between usual game semantics and the concurrent games:

- set of plays \rightarrow one labelled event structure
- behaviour against: all Opponents \rightarrow a most general one
- Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P_{-}-merging

Overview of concurrent games

Difference between usual game semantics and the concurrent games:

- set of plays \rightarrow one labelled event structure
- behaviour against: all Opponents \rightarrow a most general one
- Highlights aspects of concurrency: forks, joins, races, threads.

$$
\text { por: } \mathbb{B}_{1} \Longrightarrow \mathbb{B}_{2} \Longrightarrow \mathbb{B}
$$

por is (concurrent) innocent: the strategy is only P_{-}-merging

Overview of concurrent games

Difference between usual game semantics and the concurrent games:

- set of plays \rightarrow one labelled event structure
- behaviour against: all Opponents \rightarrow a most general one
- Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games

Difference between usual game semantics and the concurrent games:

- set of plays \rightarrow one labelled event structure
- behaviour against: all Opponents \rightarrow a most general one
- Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games

Difference between usual game semantics and the concurrent games:

- set of plays \rightarrow one labelled event structure
- behaviour against: all Opponents \rightarrow a most general one
- Highlights aspects of concurrency: forks, joins, races, threads.

por is (concurrent) innocent: the strategy is only P_{-}-merging

Event structures

Definition (Event structures)

Event structures are tuples (E, \leq, \sharp) where:

- (E, \leq) is a partial order
- $\sharp \subseteq E^{2}$ is an irreflexive symmetric relation satisfying conflict inheritance:

$$
e \sharp e^{\prime} \& e^{\prime} \leq e^{\prime \prime} \Longrightarrow e \sharp e^{\prime \prime}
$$

- Configurations of $E(\mathscr{C}(E))$: Finite downclosed sets of pairwise-compatible elements of E
- An arena $(A, \vdash, p o l)$ (alternating forest) can be seen as an event structure $\left(A,(\vdash)^{*}, \emptyset\right)$ with a polarity labelling.
It is negative when all its minimal events are.
If A is an arena, A^{\perp} is obtained from A by reversing the polarities.

Strategies

Definition (Pre-strategies)

A pre-strategy on an arena A is an event structure S along with a labelling function $\sigma: S \rightarrow A$ such that

- $x \in \mathscr{C}(S) \Longrightarrow \sigma x \in \mathscr{C}(A)$
- σ is injective on configurations

This exactly means that σ is a map of event structures.

A strategy $\sigma: S \rightarrow A$ is a pre-strategy satisfying:

1. courtesy: in S the extra causal links are of the form $\Theta \rightarrow \oplus$.
2. receptivity: any negative extension in A of a configuration reached by σ has a unique lifting in S.

Strategies

Definition (Pre-strategies)

A pre-strategy on an arena A is an event structure S along with a labelling function $\sigma: S \rightarrow A$ such that

- $x \in \mathscr{C}(S) \Longrightarrow \sigma x \in \mathscr{C}(A)$
- σ is injective on configurations

This exactly means that σ is a map of
 event structures.

A strategy $\sigma: S \rightarrow A$ is a pre-strategy satisfying:

1. courtesy: in S the extra causal links are of the form $\Theta \rightarrow \oplus$.
2. receptivity: any negative extension in A of a configuration reached by σ has a unique lifting in S.
To draw a strategy we draw the corresponding event structure with labels induced by σ.

Expanded arenas

Given an arena A, form an arena ! A :

- events: $(a \in A, \alpha:[a] \rightarrow \mathbb{N})$

! \mathbb{U}

α gives a copy index to dependencies of the label a.

- ordering: $(a, \alpha) \leq\left(a^{\prime}, \alpha^{\prime}\right)$ when
 $a \leq a^{\prime}$ and $\alpha \subseteq \alpha^{\prime}$.

Expanded arenas

Given an arena A, form an arena ! A :

- events: $(a \in A, \alpha:[a] \rightarrow \mathbb{N})$
$!\mathbb{U}$
α gives a copy index to dependencies of the label a.
- ordering: $(a, \alpha) \leq\left(a^{\prime}, \alpha^{\prime}\right)$ when
 $a \leq a^{\prime}$ and $\alpha \subseteq \alpha^{\prime}$.
A symmetry of ! A is an order-isomorphism between two configurations of $!A$ preserving labels.
Two strategies $\sigma: S \rightarrow!A$ and $\tau: T \rightarrow!A$ "are isomorphic up to copy indices" when there is an iso $\varphi: S \cong T$ such that

$$
\theta_{x}=\{(\sigma s, \tau(\varphi s)) \mid s \in x\}
$$

is a symmetry on $!A$ for $x \in \mathscr{C}(S)$.

Weak equivalence and uniformity

- "isomorphic up to copy indices" is not a congruence:

> bad :

- To overcome this, we introduced:
- \sim-strategies $\sigma: \mathcal{S} \rightarrow!A$ that are uniform wrt Opponent copy indices (method similar as that of AJM games).
- a congruence (weak equivalence) of \sim-strategies.

The category CHO

- As usual to get a CCC one needs to ask that our strategies behave the same way no matter how many times they are called.
- In our setting, we say that $\sigma: \mathcal{S} \rightarrow!A$ is single-threaded when the subsets of \mathcal{S} lying over two distinct minimal questions are disjoint and compatible.
- Then we get a cartesian closed category given by
- Objects: negative arenas
- Morphism from A to B : Negative single-threaded \sim-strategies playing on! $(A \Rightarrow B)$ up to weak equivalence. (where $A \Rightarrow B$ is the usual arrow construction on arenas).

What is this "most general" Opponent?

- In our setting, interaction of $\sigma: \mathcal{S} \rightarrow!A$ against $\tau: \mathcal{T} \rightarrow(!A)^{\perp}$ is given by pullback of maps of event structures (without polarities) of σ along τ :

$$
\sigma \circledast \tau: S \circledast T \rightarrow!A
$$

(generalized intersection)

- The pullback of σ along the full injection ! $A \hookrightarrow!A$ is isomorphic to $\sigma . \rightarrow \mathrm{It}$ is the "most general" Opponent.
- The full injection satisfies the conditions of \sim-strategy...what does it mean?
On \mathbb{B} (before expansion):

- Answers concurrently twice to the same question.

fork(II)

NAME	fork -- spawn new process
SYNOPSIS	sys fork / fork $=2$. (new process return) (old process return)
DESCRIPTION	fork is the only way new processes are created. The new process's core image is a copy of that of the caller of fork the only distinction is the return location and the fact that $r 0$ in the old process contains the process ID of the new process. This process ID is used by wait.
FILES	
SEE ALSO	sys wait, sys exec
DIAGNOSTICS	The error bit (c-bit) is set in the old process if a new process could not be created because of lack of swap space.
BUGS	See wait for a subtle bug in process destruction.
OWNER	ken, dmr

II. The fork-calculus

Syntax of the fork calculus

PCF

+ synchronous message-passing
+ a monoid structure on each base type.

$$
\begin{array}{rlrl}
A, B:: & = & \text { nat } \mid \text { bool } \mid \text { unit } & \\
& \text { (base types) } \\
& \mid \text { chan } & & \text { (channel types) } \\
t, u:: & =x|\lambda x . t| t u \mid Y & & \text { (simply typed } \lambda \text {-calculus + fixpoint) } \\
& \mid c & & \text { (PCF constants) } \\
& |t ; u| \text { if } t \text { then } u \text { else } v & & \text { (destructors) } \\
& \mid \text { new } \alpha \text { in } t & & \text { (channel creation) } \\
& \mid \text { send } t u \mid \text { recv } t & & \text { (operations on channels) } \\
& |t \| u| \text { exit } & & \text { (forks - only on base types) }
\end{array}
$$

Called Idealized CSP by Jim Laird.

Semantics

Very similar in spirit to the model by Jim Laird based on non-alternating HO games (with concurrency pointers).

Interpretation of forks. Interpretation of channels.

Interpretation of $\|$:
$\mathbb{X} \longrightarrow \mathbb{X} \longrightarrow \mathbb{X}$

- \llbracket chan $\rrbracket=\llbracket$ nat $\rrbracket \times \llbracket u n i t \rrbracket \rrbracket^{\mathbb{N}}$
- send and recv: usual accessors
- new c in t interpreted by pre-composition with a pre-strategy newchan: 【chan】.

We have soundness. If $t: \mathbb{X}$ eventually evaluates to $x_{1}\|\ldots\| x_{n} \| t^{\prime}$ then $\llbracket t \rrbracket$ contains one positive move for each x_{i}.

The "control operator" flavour of fork

We can use the fork-calculus to make the previous observations formal.

- As noticed by Jim Laird, the term:

```
let call/cc f =
    new \alpha in
    Y ( }\lambda\textrm{p}.\textrm{p}|| recv \alpha)|f ( \lambdax. send \alpha x; exit)
```

of the fork calculus has a denotation observationally equivalent to the usual strategy for call/cc.

- We deduce that "Every thread is well-bracketed" is not stable under composition.
- We also have the converse direction: fork is definable from call/cc and a join operator:
let fork $=$ callcc ($\lambda \mathrm{k}$. join (k tt) (kff))

Is call/cc really call/cc?

$((($ nat $\Longrightarrow B) \Longrightarrow$ nat $) \Longrightarrow$ nat $)$
let call/cc f = new α in
Y ($\lambda \mathrm{p} . \mathrm{p} \| \operatorname{recv} \alpha$) \|
f ($\lambda \mathrm{x}$. send $\alpha \mathrm{x}$; exit)

Infinitely many races.

Is call/cc really call/cc?

$$
(((\text { nat } \Longrightarrow B) \Longrightarrow \text { nat }) \Longrightarrow \text { nat })
$$

```
let call/cc f =
    new }\alpha\mathrm{ in
    Y ( }\lambda\textrm{p}.\textrm{p}|| recv \alpha)|
    f (\lambdax. send \alpha x; exit)
```


Infinitely many races. Visible divergences tracking:
if choice then 2 else (3 || 2)

3 || 2

Conclusion and perspectives

- Conclusion: CHO can model very complex non-deterministic and concurrent behaviour
- Future works:
- Take into account hidden divergences: if choice then tt else $\Omega \nsim t t$
- Factorization results (through the addition of a program order akin to Laird's concurrency pointers)
- Other work: conditions for extensional definability (parallel PCF, PCF+parallel-or)

