
A game semantics of fork(II)

Simon Castellan(joint work with Pierre Clairambault)
GaLoP 2015

Introduction — Concurrent Games

I Rideau and Winskel developed a framework for game
semantics based on event structures.

I We recently extended this to CHO, a “truly concurrent”
extension of HO games.

I Two approaches to tame the broad mathematical space:
I Cutting down the space of strategies to get definability results

for increasing powerful languages.
(Full abstraction for parallel stateless languages.)

I Designing very expressive languages to understand the model
operationally

(this talk)

.

Introduction — Concurrent Games

I Rideau and Winskel developed a framework for game
semantics based on event structures.

I We recently extended this to CHO, a “truly concurrent”
extension of HO games.

I Two approaches to tame the broad mathematical space:
I Cutting down the space of strategies to get definability results

for increasing powerful languages.
(Full abstraction for parallel stateless languages.)

I Designing very expressive languages to understand the model
operationally (this talk).

I. Presentation of CHO

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:

I set of plays → one labelled event structure
I behaviour against: all Opponents → a most general one

I Highlights aspects of concurrency: forks, joins, races, threads.

lor: B1 B2 B
q−

q+1

ff−1 tt−1
q+2 tt+

ff−2 tt−2
ff+ tt+

lor is sequential innocent : the strategy is an O-branching tree.
tree = no merges = no O-merges + no P-merges

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:

I set of plays → one labelled event structure
I behaviour against: all Opponents → a most general one

I Highlights aspects of concurrency: forks, joins, races, threads.

lor: B1 B2 B
q−

q+1

ff−1 tt−1
q+2 tt+

ff−2 tt−2
ff+ tt+

lor is sequential innocent : the strategy is an O-branching tree.
tree = no merges = no O-merges + no P-merges

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:

I set of plays → one labelled event structure
I behaviour against: all Opponents → a most general one
I Highlights aspects of concurrency: forks, joins, races, threads.

por : B1 B2 B

q−

q+1 q+2

ff−1 tt−1 ff−2 tt−2

ff+

tt+ tt+

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:

I set of plays → one labelled event structure
I behaviour against: all Opponents → a most general one
I Highlights aspects of concurrency: forks, joins, races, threads.

por : B1 B2 B

q−

q+1 q+2

ff−1 tt−1 ff−2 tt−2

ff+

tt+ tt+

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:

I set of plays → one labelled event structure
I behaviour against: all Opponents → a most general one
I Highlights aspects of concurrency: forks, joins, races, threads.

por : B1 B2 B

q−

q+1 q+2

ff−1 tt−1 ff−2 tt−2

ff+

tt+ tt+

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:

I set of plays → one labelled event structure
I behaviour against: all Opponents → a most general one
I Highlights aspects of concurrency: forks, joins, races, threads.

por : B1 B2 B

q−

q+1 q+2

ff−1 tt−1 ff−2 tt−2

ff+

tt+ tt+

por is (concurrent) innocent: the strategy is only P-merging

Overview of concurrent games
Difference between usual game semantics and the concurrent
games:

I set of plays → one labelled event structure
I behaviour against: all Opponents → a most general one
I Highlights aspects of concurrency: forks, joins, races, threads.

por : B1 B2 B

q−

q+1 q+2

ff−1 tt−1 ff−2 tt−2

ff+

tt+ tt+

por is (concurrent) innocent: the strategy is only P-merging

Event structures

Definition (Event structures)
Event structures are tuples (E ,≤,]) where:

I (E ,≤) is a partial order
I] ⊆ E 2 is an irreflexive symmetric relation

satisfying conflict inheritance:

e]e ′& e ′ ≤ e ′′ ===⇒ e]e ′′

·

· ·

· ·

I Configurations of E (C (E)): Finite downclosed sets of
pairwise-compatible elements of E

I An arena (A,`, pol) (alternating forest) can be seen as an
event structure (A, (`)∗, ∅) with a polarity labelling.
It is negative when all its minimal events are.
If A is an arena, A⊥ is obtained from A by reversing the
polarities.

Strategies

Definition (Pre-strategies)
A pre-strategy on an arena A is an event
structure S along with a labelling function
σ : S → A such that

I x ∈ C (S) ===⇒ σx ∈ C (A)

I σ is injective on configurations
This exactly means that σ is a map of
event structures.

B = q−

ff+ tt+

S = ·

· ·

σ

A strategy σ : S → A is a pre-strategy satisfying:
1. courtesy: in S the extra causal links are of the form � _ ⊕.
2. receptivity: any negative extension in A of a configuration

reached by σ has a unique lifting in S .

To draw a strategy we draw the corresponding event structure with
labels induced by σ.

Strategies

Definition (Pre-strategies)
A pre-strategy on an arena A is an event
structure S along with a labelling function
σ : S → A such that

I x ∈ C (S) ===⇒ σx ∈ C (A)

I σ is injective on configurations
This exactly means that σ is a map of
event structures.

B q−

ff+ tt+

σ : q−

ff+ tt+

A strategy σ : S → A is a pre-strategy satisfying:
1. courtesy: in S the extra causal links are of the form � _ ⊕.
2. receptivity: any negative extension in A of a configuration

reached by σ has a unique lifting in S .
To draw a strategy we draw the corresponding event structure with
labels induced by σ.

Expanded arenas
Given an arena A, form an arena !A:

I events: (a ∈ A, α : [a]→ N)
α gives a copy index to
dependencies of the label a.

I ordering: (a, α) ≤ (a′, α′) when
a ≤ a′ and α ⊆ α′.

!U

q−0 q−1 . . .

()+0 ()+1 . . . ()+0 ()+1 . . .

A symmetry of !A is an order-isomorphism between two
configurations of !A preserving labels.
Two strategies σ : S → !A and τ : T → !A “are isomorphic up to
copy indices” when there is an iso ϕ : S ∼= T such that

θx = {(σs, τ(ϕs)) | s ∈ x}

is a symmetry on !A for x ∈ C (S).

Expanded arenas
Given an arena A, form an arena !A:

I events: (a ∈ A, α : [a]→ N)
α gives a copy index to
dependencies of the label a.

I ordering: (a, α) ≤ (a′, α′) when
a ≤ a′ and α ⊆ α′.

!U

q−0 q−1 . . .

()+0 ()+1 . . . ()+0 ()+1 . . .

A symmetry of !A is an order-isomorphism between two
configurations of !A preserving labels.
Two strategies σ : S → !A and τ : T → !A “are isomorphic up to
copy indices” when there is an iso ϕ : S ∼= T such that

θx = {(σs, τ(ϕs)) | s ∈ x}

is a symmetry on !A for x ∈ C (S).

Weak equivalence and uniformity

I “isomorphic up to copy indices” is not a congruence:

bad : U′ U

q−i

q′i
+

()′2j
− ()′2j+1

−

()′2j+1
+

I To overcome this, we introduced:
I ∼-strategies σ : S → !A that are uniform wrt Opponent copy

indices (method similar as that of AJM games).
I a congruence (weak equivalence) of ∼-strategies.

The category CHO

I As usual to get a CCC one needs to ask that our strategies
behave the same way no matter how many times they are
called.

I In our setting, we say that σ : S → !A is single-threaded
when the subsets of S lying over two distinct minimal
questions are disjoint and compatible.

I Then we get a cartesian closed category given by
I Objects: negative arenas
I Morphism from A to B: Negative single-threaded
∼-strategies playing on !(A⇒ B) up to weak equivalence.
(where A⇒ B is the usual arrow construction on arenas).

What is this “most general” Opponent?

I In our setting, interaction of σ : S → !A against
τ : T → (!A)⊥ is given by pullback of maps of event
structures (without polarities) of σ along τ :

σ ~ τ : S ~ T → !A

(generalized intersection)
I The pullback of σ along the full injection !A ↪→ !A is

isomorphic to σ. → It is the “most general” Opponent.
I The full injection satisfies the conditions of ∼-strategy...what

does it mean?
On B (before expansion):

B
q−

ff+ tt+

I Answers concurrently twice to the same question.

fork(II)

II. The fork-calculus

Syntax of the fork calculus
PCF
+ synchronous message-passing
+ a monoid structure on each base type.

A,B ::= nat | bool | unit (base types)
| chan (channel types)
| A⇒ B (arrow types)

t, u ::= x | λx . t | t u | Y (simply typed λ-calculus + fixpoint)
| c (PCF constants)
| t; u | if t then u else v (destructors)
| new α in t (channel creation)
| send t u | recv t (operations on channels)
| t ‖ u | exit (forks – only on base types)

Called Idealized CSP by Jim Laird.

Semantics
Very similar in spirit to the model by Jim Laird based on
non-alternating HO games (with concurrency pointers).

Interpretation of forks.
Interpretation of ‖:
X X X

q−

q+0 q+0

x− y−

x+0 y+1

Interpretation of channels.
I JchanK = JnatK× JunitKN

I send and recv: usual accessors
I new c in t interpreted by

pre-composition with a
pre-strategy
newchan : JchanK.

We have soundness. If t : X eventually evaluates to
x1 ‖ . . . ‖ xn ‖ t ′ then JtK contains one positive move for each xi .

The “control operator” flavour of fork
We can use the fork-calculus to make the previous observations
formal.

I As noticed by Jim Laird, the term:
let call/cc f =

new α in
Y (λp. p ‖ recv α) ‖ f (λx. send α x; exit)

of the fork calculus has a denotation observationally equivalent
to the usual strategy for call/cc.

I We deduce that “Every thread is well-bracketed” is not stable
under composition.

I We also have the converse direction: fork is definable from
call/cc and a join operator:
let fork = callcc (λk. join (k tt) (k ff))

Is call/cc really call/cc?

let call/cc f =
new α in
Y (λp. p ‖ recv α) ‖
f (λx. send α x; exit)

→

(((nat B) nat) nat)

q−

q+0

q−

q+0

n−

n+0 n+1 . . .

Infinitely many races.

Visible divergences tracking:

if choice then 2 else (3 || 2) →
q−

2+1 3+1 2+0

3 || 2 →
q−

2+1 3+1

Is call/cc really call/cc?

let call/cc f =
new α in
Y (λp. p ‖ recv α) ‖
f (λx. send α x; exit)

→

(((nat B) nat) nat)

q−

q+0

q−

q+0

n−

n+0 n+1 . . .

Infinitely many races. Visible divergences tracking:

if choice then 2 else (3 || 2) →
q−

2+1 3+1 2+0

3 || 2 →
q−

2+1 3+1

Conclusion and perspectives

I Conclusion: CHO can model very complex non-deterministic
and concurrent behaviour

I Future works:
I Take into account hidden divergences:

if choice then tt else Ω 6' tt

I Factorization results (through the addition of a program order
akin to Laird’s concurrency pointers)

I Other work: conditions for extensional definability (parallel
PCF, PCF+parallel-or)

	Presentation of `39`42`"613A``45`47`"603ACHO
	The fork-calculus

