La stratégie de la fourchette

Simon Castellan, 8 janvier 2015
JFLA 2015

fork(II)

11/3/71
NAME

SYNOPSIS
DESCRIPTION
FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SYS FORK (II)
fork -- spawn new process

sys fork / fork = 2.
(new process return)
(old process return)

fork is the only way new processes are created. The new
process’s core image is a copy of that of the caller of
fork the only distinction is the return location and the
fact that r0 in the old process contains the process ID of
the new process. This process ID is used by wait.

sys wait, sys exec

The error bit (c—bit) is set in the old process if a new
process could not be created because of lack of swap
space.

See wait for a subtle bug in process destruction.

ken, dmr

Demo

...demo...

Syntax

» ldealized Algol + a monoid structure on each base type.
A, B ::=nat | bool | unit (base types)

| var references)

| A= B
tbus=x|Ax.t|tul|Y

arrow types)

simply typed A-calculus + fixpoint)
| ¢ PCF constants)
|ti=u|!lt operations on references)

| t;u | if t then u else v

(
(
(
(
| new r:=k int (reference creation)
(
(destructors)
(

| t] u] exit forks, only on base types)

Operational semantics - structural congruence

Idea: pure (3-reduction + redution at base type for effects.
(Inspired from [AM99, GMO07])

» Structural congruence = to reduce at higher-order types:
smallest congruence containg the two equations

(M.t)yu=tlu/x] Y M=M(Y M)

» Small-step reduction at base types: [t (t,p) — (t/,p') : X
» [contains only references
> t,t’ are terms such that '+ ¢, ¢’ : X (base type)
» p,p :dom(lN — N

Operational semantics - effect reduction

t =t Fet,p—up u=u
[-red ; —
r=tp—u,p
=k
Deref M=K
MF=tr,p— kop
Assign
Frer=kp—(0,(r—=k)Up\r
réefv(t
Newl 7 fu(t)

NFnewr:=kint,p—t,p\r

Mr:vark-t,p—t, o
NeW2) 7p 7p

Fhnewr:=p(r)int,p\r—mnewr:=p/(r)int p \r

Operational semantics - effect reduction

E ::== (base type evaluation context)
[] |succ E| ... |if Ethentelseu|x:=E|xE

E is an evaluation context
FEE[t] ul,p— E[t] || E[u], p

Duplication

E is an evaluation context

Erasement - -
[+ Elexit], p — exit, p
P) F-=t,p—t,p
reemption
CE(E] u)p— (),
) Fu,p—d,p
Preemption’

FE(tlu),p—(t]),

Syntax — Semantics

» Fork calculus = operational modelisation of the fork syscall

» Features concurrency and non-determinism

Concurrency + Non-determinism
“true and false” + “true or false”

partial orders + binary conflict

— Event structures.

Syntax — Semantics

» Fork calculus = operational modelisation of the fork syscall

» Features concurrency and non-determinism

Concurrency + Non-determinism
“true and false” + “true or false”

partial orders + binary conflict

— Event structures.

» Now: a very high-level view of the game model based on event
structures.

On game semantics

Denotational semantics (at first of typed A-calculus + extensions)
where:

> types — games
» programs — strategies
» computation — interaction of strategies

Hyland-Ond game semantics: supports references [AM99] and
concurency through interleavings [GMO7].

Our model: truly concurrent extension of a truly concurrent
semantics to this language based on Winskel's concurrent games.

Usual HO game semantics

Rules for a type? Arenas.

(@ =a) =a) =a

Usual HO game semantics

Rules for a type? Arenas.

(a=a)—=a) =«

q
yd

Usual HO game semantics

Rules for a type? Arenas.

(@ =a) =a) =a

q
e

q+

Usual HO game semantics

Rules for a type? Arenas.

(a=a)=a)—a«a

Usual HO game semantics

Rules for a type? Arenas.

(¢ =a) =a) =a

Usual HO game semantics

Rules for a type? Arenas.

(@ =a) =a) =a

Usual HO game semantics

How to inhabit: + (o= a) = a) =«
((a=a)=a)—=a ((a—~a)—>a)—a
T
Ve
gt
P
T
yd

Usual HO game semantics

How to inhabit: F \f.

(@ =a) =a) ~a

(o= a) = a) =«
(@ >a)—a)—a

s,

Usual HO game semantics

How to inhabit: = Af. f ((a—=a)—a)—a
((a=a)=a)—=a ((a—~a)—>a)—a
q- Ay,
P :
q* a7
P
T
yd

Usual HO game semantics

How to inhabit: = Af. f (Ax.): (@ —=a) > a) >«
((a=a)=a)—=a = ((a0—=a)—=>a)—a
a =i,
Ve %
q* ar
P
q Do
yd

Usual HO game semantics

How to inhabit: = Af. f (Ax.f): (@ —=a) > a) >«

((a>a)>a)—a (((a =a) =a)—a

a .
q" i
e
a q)Tx
e .
dr

Usual HO game semantics

How to inhabit: = Af. f (Ax.f (A\y.)): ((a > o) 5 a) = «

((a=a)=a)—=a ((a—~a)—>a)—a

a Oy,
q" Laf
Ve
q e} N8
s
q" qf

Usual HO game semantics

How to inhabit: = Af. f (Ax.f (Ay.x)): ((a > o) > a) = «

(((a=a)>a)—a (((a—=a)—a)—a
q Ay,
gt af
q Ay
q* 47
Soa,
.

Usual HO game semantics

How to inhabit: = Af. f (Ax.f (Ay.x)): (¢ > o) > a) = «

(e =a)=a) =« (e —=a)—=a)—a
q O,
gt qf
v v
q]\
gt af
K
Ay
o

Moves are chronologically (ie. totally) ordered.
— To handle concurrency, we need partial orders on plays

Concurrency in arenas

The concurrent content of terms

(d—a—a) = (a—a—a)

b,

The concurrent content of terms

(d—a—a) = (a—a—a)

b,

The concurrent content of terms

(d—a—a) = (a—a—a)

b,

The concurrent content of terms

(a%aea)%(a‘)a%a)

- q;b

The concurrent content of terms

(a—=a—a)—=(a—=a—a)

e q;b

— evaluation order of the two negative answers is left to the
Opponent: this strategy expresses its behaviour against the most
concurrent Opponent.

The concurrent content of terms

(aﬂaﬁa)%(a%a%a)

e q;b

— evaluation order of the two negative answers is left to the
Opponent: this strategy expresses its behaviour against the most
concurrent Opponent.

neg tt = ff

The concurrent content of terms

(aﬂaﬁa)%(a%a%a)

e q;b

— evaluation order of the two negative answers is left to the
Opponent: this strategy expresses its behaviour against the most
concurrent Opponent.

neg tt =ff neg ff =tt

The concurrent content of terms

(e —a—a)— (a—a—a)

e q;b

— evaluation order of the two negative answers is left to the
Opponent: this strategy expresses its behaviour against the most
concurrent Opponent.

neg tt = ff neg ff =tt neg (ff || tt) = (tt || £f)

Concurrency against non-determinism

(a a a)
7
fft ttt

fork

(a a @)
T
/
ffT tth
choice

Results & conclusions

Results:
» Denotational semantics for the fork calculus (t, p) — [t; p]

» Soundness results: If ' (¢, p) — (¢, p') then [t; o]
simulates [t/; p] (in [GMO07], the result was full abstraction
wrt trace inclusion).

» We retain a lot of information on the programs (causalities,
non-deterministic branching point)

Perspectives:

» A showcase of the power of concurrent games: we can actually
model complex concurrent programming languages

» Soundness is a first step, aim: full abstract wrt weak
bisimulation because strategies retain a lot of information.

» Main problem: diverging branches hidden during composition:

[if choice then () else Q] ~ [()]

[Samson Abramsky and Guy McCusker.
Full abstraction for idealized algol with passive expressions.
volume 227, pages 3-42. 1999.

[§ Dan R. Ghica and Andrzej S. Murawski.
Angelic semantics of fine-grained concurrency, 2007.

	A fork-calculus

