Symmetry in Concurrent Games

Simon Castellan, Pierre Clairambault ENS Lyon France Glynn Winskel University of Cambridge United Kingdom

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

July 14, 2014

Motivation and context

Motivation:

- What? Develop and extend the "truly concurrent" approach to game semantics based on partial orders, to allow for replication through symmetry.
- Why? Obtain a finer representation of programs and their execution in a more elegant mathematical framework.
- Interpret strategies as event structures to focus on **causality**.

Related work:

- Notions of deterministic concurrent strategies: Abramsky, Melliès, Mimram, Faggian, Piccolo; Orbital games: Melliès
- Strategies as presheaves: Hirschowitz, Pous
- Non-deterministic concurrent strategies as event structures: Rideau, Winskel.
 - \rightarrow We will work with this framework.

I. CONCURRENT GAMES

Event structures and their maps

Definition (Event structure)

An event structure E is a set of event E along with

- an order \leq_E (causality)
- a set $\operatorname{Con}_E \subseteq \mathscr{P}_f(E)$ (consistency)

satisfying some axioms.

Set of **configurations** of *E*:

$$\mathscr{C}(E) = \{ x \subseteq E | x \in \operatorname{Con}_E \& x \text{ down-closed} \}$$

Definition (Maps of event structures)

A map $f : A \rightarrow B$ is a function on events satisfying:

- Preservation of configurations:
 x∈𝔅(A)⇒f x∈𝔅(B)
- Local injectivity: If x∈𝒴(A) then f defines a bijection x ^f = fx

Pullbacks in event structures

Proposition

The category of event structures has all pullbacks:

Configurations of the pullback are given by composite bijections:

$$\mathscr{C}(A) \ni x \stackrel{f}{\cong} fx = gy \stackrel{g}{\cong} y \in \mathscr{C}(B)$$

inducing no causal loops (secured bijections)

Pullbacks in event structures

Proposition

The category of event structures has all pullbacks:

Configurations of the pullback are given by composite bijections:

$$\mathscr{C}(A) \ni x \stackrel{f}{\cong} fx = gy \stackrel{g}{\cong} y \in \mathscr{C}(B)$$

inducing no causal loops (secured bijections)

(日)、

э

Pullbacks in event structures

Proposition

The category of event structures has all pullbacks:

Configurations of the pullback are given by composite bijections:

$$\mathscr{C}(A) \ni x \stackrel{f}{\cong} fx = gy \stackrel{g}{\cong} y \in \mathscr{C}(B)$$

inducing no causal loops (secured bijections)

Games and pre-strategies

A game is an event structure *E* where each event has a polarity (\oplus or \ominus)

A **pre-strategy** on a game A is a map $\sigma : S \rightarrow A$

Pre-strategies from A to B are pre-strategies on the game $A^{\perp} || B$ where || is parallel composition – no conflict or caulities between A and B.

Notation : $\sigma : A \rightarrow B$

Pre-strategies from A to B are pre-strategies on the game $A^{\perp} || B$ where || is parallel composition – no conflict or caulities between A and B.

Notation : $\sigma : A \rightarrow B$

Pre-strategies from A to B are pre-strategies on the game $A^{\perp} || B$ where || is parallel composition – no conflict or caulities between A and B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notation : $\sigma : A \rightarrow B$

Pre-strategies from *A* **to** *B* are pre-strategies on the game $A^{\perp} || B$ where || is parallel composition – no conflict or caulities between *A* and *B*.

Notation : $\sigma : A \rightarrow B$

Pre-strategies from *A* **to** *B* are pre-strategies on the game $A^{\perp} || B$ where || is parallel composition – no conflict or caulities between *A* and *B*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notation : $\sigma : A \rightarrow B$

Towards a category : Identity

Copycat strategy: $\gamma_A : \mathbb{C}_A \to A^{\perp} || A$, forwards negative moves on one side to the other side.

Configurations of copycat: pair of configurations (x, y) of A such that

- $x \cap y \subseteq \overline{y}$
- $x \cap y \subseteq^+ x$

which we write $y \sqsubseteq_A x$ (Scott order on A)

$$\mathscr{C}(\mathbb{C}_A) \cong \{ (x, y) \in \mathscr{C}(A)^2 \mid y \sqsubseteq x \}$$

Composition of pre-strategies

composition = interaction + hiding.

Interaction of pre-strategies $\sigma : S \to A^{\perp} \parallel B$ and $\tau : T \to B^{\perp} \parallel C$ via a pullback:

Composition of pre-strategies

composition = interaction + hiding.

Interaction of pre-strategies $\sigma : S \to A^{\perp} \parallel B$ and $\tau : T \to B^{\perp} \parallel C$ via a pullback:

A bicategory of games

• What notion of equivalence for strategies? Isomorphism:

• Not all strategies behave well with respect to copycat up to isomorphim. Only the **innocent** and **receptive** ones.

Theorem (Rideau, Winskel)

A pre-strategy $\sigma : A \rightarrow B$ is innocent and receptive iff it satisfies $\gamma_B \odot \sigma \odot \gamma_A \cong \sigma$

- Defining strategy to mean innocent and receptive pre-strategy, we have a bicategory of games and strategies.
- Goal: to add symmetry to the framework to allow for finer equivalences to model replication for instance.

II. EVENT STRUCTURES WITH SYMMETRY

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Event structures with symmetry

Definition (Event structure with symmetry)

An event structure with symmetry \mathcal{A} is given by a span in the category of event structures:

where I_E , r_E are open (ie. have a **bisimulation**-like lifting property), jointly monic and form an equivalence relation.

More concretely, an event structure with symmetry can be given by a pair $\mathcal{A} = (\mathcal{A}, \mathbb{S}_{\mathcal{A}})$ where $\mathbb{S}_{\mathcal{A}}$ is a set of bijections between configurations of \mathcal{A}

- that contains identities and is stable under inverse and composition
- if $x \cong_{A}^{\theta} y \in S_{A}$ then any extension or restriction of x induces a restriction or an extension of θ .

Maps of event structures with symmetry

A map $f : A \rightarrow B$ is given by two maps $(f : A \rightarrow B, \tilde{f} : \tilde{A} \rightarrow \tilde{B})$ making the following commute:

For $f, g : A \rightarrow B$, we write $f \sim g$ iff there exists a map $h : A \rightarrow \tilde{B}$ such that the following commute:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Pseudo-pullbacks

No pullbacks anymore, but pseudo-pullbacks:

Proposition

The pseudo-pullback of maps of ess exists:

Configurations of P correspond to

$$\mathscr{C}(A) \ni x \stackrel{f}{\cong} fx \stackrel{\theta}{\cong} gy \stackrel{g}{\cong} y \in \mathscr{C}(B)$$

that are secured

This allows us to see \tilde{A} itself as an event structure with symmetry:

Proposition (Higher symmetry)

There is a canonical symmetry on \tilde{A} :

 $\theta \stackrel{\varphi,\varphi'}{\cong}_{\tilde{A}} \theta' \text{ iff}$ $\stackrel{\varphi}{\cong}_A$

III. CONCURRENT GAMES WITH SYMMETRY

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Games with symmetry and \sim -pre-strategies

As in the previous part, we define

• A concurrent game with symmetry is an event structure with symmetry and polarities (symmetry preserves polarities)

- A ~-prestrategy on a game A is a map of event structures with symmetry S→A
- A ~-prestrategy from a game \mathcal{A} to \mathcal{B} is a ~-pre-strategy on $\mathcal{A}^{\perp} \| \mathcal{B}$.
- To update the construction of the previous section:
 - Composition: Pullbacks \rightarrow pseudo-pullbacks.
 - Identity: Scott order \rightarrow Scott category,

Towards a bicategory: Identity

- No natural candidate for the symmetry on \mathbb{C}_A for every A...
- CA is too strict: it completely ignores the symmetry
- Replace the Scott order by the Scott category of configurations

$$\forall x, y \in \mathscr{C}(A), Sc(x, y) = \{\theta \in \mathscr{C}(\tilde{A}) \mid x \supseteq^{-} I\theta \cong_{A}^{\theta} r\theta \subseteq^{+} y\}$$

If $\theta \in Sc(x, y)$ we write $x \xrightarrow{\theta} y$.

 New saturated copycat CC_A whose configurations are arrows from the Scott category

$$\mathscr{C}(A) \ni x \xrightarrow{\theta} y \in \mathscr{C}(A)$$
$$\mathscr{C}(\mathcal{C}_{\mathcal{A}}) = \{(x, y, \theta) | x, y \in \mathscr{C}(A), y \xrightarrow{\theta} x\}$$

 Symmetry on C_A is given by C_A (with A considered as an event structure with symmetry)

Towards a bicategory: Composition

No pullbacks in event structures with symmetry, but pseudo-pullbacks! Given $\sigma: S \rightarrow A^{\perp} || B$ and $\tau: T \rightarrow B^{\perp} || C$, we form their interaction as follows:

Hiding yields the desired map $\tau \odot \sigma : S \odot T \rightarrow A^{\perp} || C$.

The \sim -bicategory of concurrent games with symmetry

• We exploit the extra power of symmetry to have a weaker equivalence: $\sigma{\simeq}\tau$ iff

with $f \circ g \sim id_{\mathcal{T}}$ and $g \circ f \sim id_{\mathcal{S}}$.

• What strategies behave well with respect to copycat up to that equivalence?

Theorem

A ~-prestrategy $\sigma : S \rightarrow A$ behaves with respect to copycat iff

- $\tilde{\sigma}$ is a strategy (in the sense of Rideau-Winskel)
- σ is saturated, ie. closed under the action of the symmetry of ${\cal A}$

In that case, we call $\sigma \sim$ -strategy.

 Thus we get a ~-bicategory (a bicategory where coherence laws hold up to ~) of games with symmetry and ~-strategies.

IV. Applications

The AJM exponential

Definition

From a game with symmetry A, form !A having:

- Events, pairs $(i, a) \in \mathbb{N} \times A$
- Causality,

$$(i_1,a_1)\leqslant_{!A}(i_2,a_2)\Leftrightarrow i_1=i_2$$
 & $a_1\leqslant_A a_2$

Consistency,

$$\operatorname{Con}_{A} = \bigcup_{i \in I} \{i\} \times X_i$$

Isomorphism family,

$$\bigcup_{i\in I} \{i\} \times x_i \qquad \stackrel{\theta}{\cong} {}_{!A} \qquad \bigcup_{j\in J} \{j\} \times x_j$$

when there is a bijection $\pi: I \to J$ and isomorphisms $x_i \stackrel{\theta_i}{\cong}_A x_j$ with, for all $(i, a) \in \bigcup_{i \in I} \{i\} \times x_i$,

$$\theta(i, \mathbf{a}) = (\pi(i), \theta_i(\mathbf{a}))$$

AJM games and Classical Linear Logic

We recover (and extend) the model of 1 .

Theorem

Concurrent games with symmetry form a model of classical linear logic in the sense of 1

Proof.

We have natural maps preserving symmetry:

μ_A	:	!!A	\rightarrow	!A	m_A	:	$ A \parallel A$	\rightarrow	!A
		(i, (j, a))	\mapsto	$(\langle i,j angle, a)$			(1,(i,a))	\mapsto	(2 <i>i</i> , <i>a</i>)
							(2, (i, a))	\mapsto	(2i + 1, a)
η_A	:	A	\rightarrow	!A					
		а	\mapsto	(0, <i>a</i>)	eA	:	1	\rightarrow	!A

satisfying monad/monoid laws up to symmetry. Those are lifted to \sim -strategies with a general construction, we get an exponential by self-duality.

¹P. Baillot, V. Danos, T. Ehrhard and L. Regnier, <u>Believe it or not, AJM's games model is a</u> model of classical linear logic, LICS'97

HO games

We also have an extension of HO games in our framework:

- an exponential : ? A (A an arena)
- a notion of single-threaded strategies on ?A
- a notion of sequential HO-innocent strategies on ?A, stable under composition

Proposition

We have a CCC CHO given by:

- Objects: arenas
- Morphisms from A to B: correspond to negative single-threaded ~-strategies on ?A[⊥]||?B

Proposition

The sub-CCC of CHO consisting in deterministic and sequential HO-innocent strategies is isomorphic to the standard category of arenas and innocent strategies.

Contributions and future work

Contributions:

• Extension of the framework of Rideau-Winskel with symmetry, thus revealing interesting mathematical structure

• Extension of AJM and HO games to a concurrent setting

Future work:

- Extension with probabilities
- Connections to the metalanguage for concurrent strategies
- Applications to modeling programming languages