
Towards a causal and compositional operational
semantics of programming languages

Simon Castellan1

1Imperial College London, UK

November 21th, 2016
LSV Seminar

Message-passing on my computer

Consider this program mp:

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my computer:

I

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 2 / 37

Message-passing on my computer

Consider this program mp:

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my computer:

I

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 2 / 37

Message-passing on my computer

Consider this program mp:

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my computer:

I Wdata:=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 2 / 37

Message-passing on my computer

Consider this program mp:

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my computer:

I Wdata:=17 · Wflag:=1

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 2 / 37

Message-passing on my computer

Consider this program mp:

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my computer:

I Wdata:=17 · Wflag:=1 · Rflag=1

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 2 / 37

Message-passing on my computer

Consider this program mp:

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my computer:

I Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 2 / 37

Message-passing on my computer

Consider this program mp:

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my computer:

I Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 2 / 37

Message-passing on my phone

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my phone:

I Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

I Wflag:=1

I Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

I Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

I Rflag=0 · Wflag:=1 · Wdata:=17

A di�erent architecture, much harder to reason about. . .

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 3 / 37

Message-passing on my phone

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my phone:

I Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

I Wflag:=1

I Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

I Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

I Rflag=0 · Wflag:=1 · Wdata:=17

A di�erent architecture, much harder to reason about. . .

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 3 / 37

Message-passing on my phone

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my phone:

I Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

I Wflag:=1 · Rflag=1

I Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

I Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

I Rflag=0 · Wflag:=1 · Wdata:=17

A di�erent architecture, much harder to reason about. . .

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 3 / 37

Message-passing on my phone

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my phone:

I Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

I Wflag:=1 · Rflag=1 · Rdata=0

I Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

I Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

I Rflag=0 · Wflag:=1 · Wdata:=17

A di�erent architecture, much harder to reason about. . .

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 3 / 37

Message-passing on my phone

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my phone:

I Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

I Wflag:=1 · Rflag=1 · Rdata=0 · Wdata:=17

I Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

I Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

I Rflag=0 · Wflag:=1 · Wdata:=17

A di�erent architecture, much harder to reason about. . .

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 3 / 37

Message-passing on my phone

data = flag = 0
data := 17; r ← flag;
flag := 1 if(r == 1){v ← data}

Possible execution traces on my phone:

I Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

I Wdata:=17 · Rflag=0 · Wflag:=1

I Rflag=0 · Wdata:=17 · Wflag:=1

I Wflag:=1 · Rflag=1 · Rdata=0 · Wdata:=17

I Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

I Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

I Rflag=0 · Wflag:=1 · Wdata:=17

A di�erent architecture, much harder to reason about. . .

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 3 / 37

Structure behind traces


Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

Wflag:=1 Wdata:=17

Rflag=1 Rdata=17

{
Wflag:=1 · Rflag=1 · Rdata=0 · Wdata:=17

Wflag:=1 Rdata=0

Rflag=1 Wdata:=17


Rflag=0 · Wdata:=17 · Wflag:=1

Wdata:=17 · Rflag=0 · Wflag:=1

Rflag=0 · Wflag:=1 · Wdata:=17

Rflag=0 Wdata:=17

Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 4 / 37

Structure behind traces


Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

Wflag:=1 Wdata:=17

Rflag=1 Rdata=17

{
Wflag:=1 · Rflag=1 · Rdata=0 · Wdata:=17

Wflag:=1 Rdata=0

Rflag=1 Wdata:=17


Rflag=0 · Wdata:=17 · Wflag:=1

Wdata:=17 · Rflag=0 · Wflag:=1

Rflag=0 · Wflag:=1 · Wdata:=17

Rflag=0 Wdata:=17

Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 4 / 37

Structure behind traces


Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

Wflag:=1 Wdata:=17

Rflag=1 Rdata=17

{
Wflag:=1 · Rflag=1 · Rdata=0 · Wdata:=17

Wflag:=1 Rdata=0

Rflag=1 Wdata:=17


Rflag=0 · Wdata:=17 · Wflag:=1

Wdata:=17 · Rflag=0 · Wflag:=1

Rflag=0 · Wflag:=1 · Wdata:=17

Rflag=0 Wdata:=17

Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 4 / 37

Structure behind traces


Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

Wflag:=1 Wdata:=17

Rflag=1 Rdata=17

{
Wflag:=1 · Rflag=1 · Rdata=0 · Wdata:=17

Wflag:=1 Rdata=0

Rflag=1 Wdata:=17


Rflag=0 · Wdata:=17 · Wflag:=1

Wdata:=17 · Rflag=0 · Wflag:=1

Rflag=0 · Wflag:=1 · Wdata:=17

Rflag=0 Wdata:=17

Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 4 / 37

Structure behind traces


Wflag:=1 · Wdata:=17 · Rflag=1 · Rdata=17

Wflag:=1 · Rflag=1 · Wdata:=17 · Rdata=17

Wdata:=17 · Wflag:=1 · Rflag=1 · Rdata=17

Wflag:=1 Wdata:=17

Rflag=1 Rdata=17

{
Wflag:=1 · Rflag=1 · Rdata=0 · Wdata:=17

Wflag:=1 Rdata=0

Rflag=1 Wdata:=17


Rflag=0 · Wdata:=17 · Wflag:=1

Wdata:=17 · Rflag=0 · Wflag:=1

Rflag=0 · Wflag:=1 · Wdata:=17

Rflag=0 Wdata:=17

Wflag:=1

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 4 / 37

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

Wflag:=1 Wdata:=17

Rflag=1 Rdata=17

,

Wflag:=1

Rflag=1

Rdata=0

Wdata:=17

,
Rflag=0 Wdata:=17

Wdata:=1



This set of partial orders can be summed by an event structure:

Wdata:=17 Wflag:=1 Rflag=0

Rdata=17 Rflag=1 Wflag:=1

Rdata=0

Wdata:=17

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 5 / 37

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

Wflag:=1 Wdata:=17

Rflag=1 Rdata=17

,

Wflag:=1

Rflag=1

Rdata=0

Wdata:=17

,
Rflag=0 Wdata:=17

Wdata:=1


This set of partial orders can be summed by an event structure:

Wdata:=17 Wflag:=1 Rflag=0

Rdata=17 Rflag=1 Wflag:=1

Rdata=0

Wdata:=17

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 5 / 37

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

Wflag:=1 Wdata:=17

Rflag=1 Rdata=17

,

Wflag:=1

Rflag=1

Rdata=0

Wdata:=17

,
Rflag=0 Wdata:=17

Wdata:=1


This set of partial orders can be summed by an event structure:

Wdata:=17 Wflag:=1 Rflag=0

Rdata=17 Rflag=1 Wflag:=1

Rdata=0

Wdata:=17

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 5 / 37

This talk

1. Modelling a �rst-order programming language.
With relaxed shared memory.

2. When actions become contextual.
An introduction to game semantics for higher-order languages.

3. Interpretating a higher-order language, adequately.
With concurrency & non-determinism.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 6 / 37

I. Modelling a first-order programming language

An ARM-like semantics for a toy language

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 7 / 37

An assembly language with relaxed semantics

Syntax. Idents split in thread-local registers and global variables.

e ::= r | e + e | . . .
t ::= fence; t | x := e; t | r ← x; t

p ::= t ‖ . . . ‖ t

Actions. We observe the following actions from the programs:

Σ ::= Wx:=k | Rx=k | fence.

Semantics. Described by a labeled transition system on states p, µ:

〈p @µ〉 `∈Σ−−→ 〈p′ @µ′〉. (µ, µ′ : Var→ N)

It is relaxed: operations on independent variables can be reordered.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 8 / 37

A few rules
Thread rules: 〈t @µ〉 `−→ 〈t ′ @µ′〉 :

〈x := k; t@µ〉 W
x:=k−−−→ 〈t@µ[x := k]〉

〈fence; t@µ〉 fence−−−→ 〈t@µ〉

〈t@µ〉 `−→ 〈t ′@µ′〉 ` 6= fence var(`) 6= x

〈x := k; t@µ〉 `−→ 〈x := k ; t ′@µ′〉

And then:

〈ti @µ〉 `−→ 〈t ′i @µ′〉

〈t1 ‖ . . . ‖ ti ‖ . . . ‖ tn @µ〉 `−→ 〈t1 ‖ . . . ‖ t ′i ‖ . . . ‖ tn @µ′〉

This generates the operational (partial) traces:

Tr(p, µ) = {`1. . . `n | 〈p @µ〉 `1−→ . . .
`n−→ 〈p′ @µ′〉}.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 9 / 37

A few rules
Thread rules: 〈t @µ〉 `−→ 〈t ′ @µ′〉 :

〈x := k; t@µ〉 W
x:=k−−−→ 〈t@µ[x := k]〉 〈fence; t@µ〉 fence−−−→ 〈t@µ〉

〈t@µ〉 `−→ 〈t ′@µ′〉 ` 6= fence var(`) 6= x

〈x := k; t@µ〉 `−→ 〈x := k ; t ′@µ′〉

And then:

〈ti @µ〉 `−→ 〈t ′i @µ′〉

〈t1 ‖ . . . ‖ ti ‖ . . . ‖ tn @µ〉 `−→ 〈t1 ‖ . . . ‖ t ′i ‖ . . . ‖ tn @µ′〉

This generates the operational (partial) traces:

Tr(p, µ) = {`1. . . `n | 〈p @µ〉 `1−→ . . .
`n−→ 〈p′ @µ′〉}.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 9 / 37

A few rules
Thread rules: 〈t @µ〉 `−→ 〈t ′ @µ′〉 :

〈x := k; t@µ〉 W
x:=k−−−→ 〈t@µ[x := k]〉 〈fence; t@µ〉 fence−−−→ 〈t@µ〉

〈t@µ〉 `−→ 〈t ′@µ′〉 ` 6= fence var(`) 6= x

〈x := k; t@µ〉 `−→ 〈x := k ; t ′@µ′〉

And then:

〈ti @µ〉 `−→ 〈t ′i @µ′〉

〈t1 ‖ . . . ‖ ti ‖ . . . ‖ tn @µ〉 `−→ 〈t1 ‖ . . . ‖ t ′i ‖ . . . ‖ tn @µ′〉

This generates the operational (partial) traces:

Tr(p, µ) = {`1. . . `n | 〈p @µ〉 `1−→ . . .
`n−→ 〈p′ @µ′〉}.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 9 / 37

A few rules
Thread rules: 〈t @µ〉 `−→ 〈t ′ @µ′〉 :

〈x := k; t@µ〉 W
x:=k−−−→ 〈t@µ[x := k]〉 〈fence; t@µ〉 fence−−−→ 〈t@µ〉

〈t@µ〉 `−→ 〈t ′@µ′〉 ` 6= fence var(`) 6= x

〈x := k; t@µ〉 `−→ 〈x := k ; t ′@µ′〉

And then:

〈ti @µ〉 `−→ 〈t ′i @µ′〉

〈t1 ‖ . . . ‖ ti ‖ . . . ‖ tn @µ〉 `−→ 〈t1 ‖ . . . ‖ t ′i ‖ . . . ‖ tn @µ′〉

This generates the operational (partial) traces:

Tr(p, µ) = {`1. . . `n | 〈p @µ〉 `1−→ . . .
`n−→ 〈p′ @µ′〉}.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 9 / 37

A few rules
Thread rules: 〈t @µ〉 `−→ 〈t ′ @µ′〉 :

〈x := k; t@µ〉 W
x:=k−−−→ 〈t@µ[x := k]〉 〈fence; t@µ〉 fence−−−→ 〈t@µ〉

〈t@µ〉 `−→ 〈t ′@µ′〉 ` 6= fence var(`) 6= x

〈x := k; t@µ〉 `−→ 〈x := k ; t ′@µ′〉

And then:

〈ti @µ〉 `−→ 〈t ′i @µ′〉

〈t1 ‖ . . . ‖ ti ‖ . . . ‖ tn @µ〉 `−→ 〈t1 ‖ . . . ‖ t ′i ‖ . . . ‖ tn @µ′〉

This generates the operational (partial) traces:

Tr(p, µ) = {`1. . . `n | 〈p @µ〉 `1−→ . . .
`n−→ 〈p′ @µ′〉}.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 9 / 37

Labeled event structures

De�nition
A (Σ-labeled) event structure is a tuple
(E ,≤E ,]E , ` : E → Σ) where (E ,≤E) is a partial
order and]E is a symmetric relation on E ,
satisfying �nite causes and con�ict inheritance.

a b

c d

e

I Con�gurations are downclosed, con�ict-free subsets of E .
C (E) is the set of con�gurations of E .

I A trace of E is a linearisation of a con�guration of E .
Tr(E) is the set of traces of E (can be seen as a subset of Σ∗).

Our goal: a mapping J·K from states to event structures s.t.:

Tr(p, µ) = TrJp, µK.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 10 / 37

Labeled event structures

De�nition
A (Σ-labeled) event structure is a tuple
(E ,≤E ,]E , ` : E → Σ) where (E ,≤E) is a partial
order and]E is a symmetric relation on E ,
satisfying �nite causes and con�ict inheritance.

a b

c d

e

I Con�gurations are downclosed, con�ict-free subsets of E .
C (E) is the set of con�gurations of E .

I A trace of E is a linearisation of a con�guration of E .
Tr(E) is the set of traces of E (can be seen as a subset of Σ∗).

Our goal: a mapping J·K from states to event structures s.t.:

Tr(p, µ) = TrJp, µK.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 10 / 37

Labeled event structures

De�nition
A (Σ-labeled) event structure is a tuple
(E ,≤E ,]E , ` : E → Σ) where (E ,≤E) is a partial
order and]E is a symmetric relation on E ,
satisfying �nite causes and con�ict inheritance.

a b

c d

e

I Con�gurations are downclosed, con�ict-free subsets of E .
C (E) is the set of con�gurations of E .

I A trace of E is a linearisation of a con�guration of E .
Tr(E) is the set of traces of E (can be seen as a subset of Σ∗).

Our goal: a mapping J·K from states to event structures s.t.:

Tr(p, µ) = TrJp, µK.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 10 / 37

An overview of the semantics

1. Thread semantics: context is left open (and unknown)

Wflag:=1 Wdata:=17 Rflag=0 Rflag=1 Rflag=2 . . .

Rdata=0 Rdata=1 . . .

2. Final semantics: context is assumed empty
Compute interactions with memory:

Wdata:=17 Wflag:=1 Rflag=0

Rdata=17 Rflag=1 Wflag:=1

Rdata=0

Wdata:=17

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 11 / 37

Thread semantics

Fences. Jfence; tK = fence · JtK
fence

JtK
(≤`·E=≤E ∪{(`, `′)})

Writes. Jx := k ; tK = Wx:=k ; JtK
Wx:=k

JtK
(≤`;E=≤E ∪{(`, fence), (`, `′) | var(`) = var(`′)}).

Reads. Jr ← x; tK =
∑

n∈N Rx=n; Jt[n/r]K

Rx=0 Rx=1 . . .

Jt[0/r]K Jt[1/r]K . . .

Program. No interaction: Jt1 ‖ . . . ‖ tnK = Jt1K ‖ . . . JtnK.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 12 / 37

Thread semantics

Fences. Jfence; tK = fence · JtK
fence

JtK
(≤`·E=≤E ∪{(`, `′)})

Writes. Jx := k ; tK = Wx:=k ; JtK
Wx:=k

JtK
(≤`;E=≤E ∪{(`, fence), (`, `′) | var(`) = var(`′)}).

Reads. Jr ← x; tK =
∑

n∈N Rx=n; Jt[n/r]K

Rx=0 Rx=1 . . .

Jt[0/r]K Jt[1/r]K . . .

Program. No interaction: Jt1 ‖ . . . ‖ tnK = Jt1K ‖ . . . JtnK.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 12 / 37

Thread semantics

Fences. Jfence; tK = fence · JtK
fence

JtK
(≤`·E=≤E ∪{(`, `′)})

Writes. Jx := k ; tK = Wx:=k ; JtK
Wx:=k

JtK
(≤`;E=≤E ∪{(`, fence), (`, `′) | var(`) = var(`′)}).

Reads. Jr ← x; tK =
∑

n∈N Rx=n; Jt[n/r]K

Rx=0 Rx=1 . . .

Jt[0/r]K Jt[1/r]K . . .

Program. No interaction: Jt1 ‖ . . . ‖ tnK = Jt1K ‖ . . . JtnK.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 12 / 37

Thread semantics

Fences. Jfence; tK = fence · JtK
fence

JtK
(≤`·E=≤E ∪{(`, `′)})

Writes. Jx := k ; tK = Wx:=k ; JtK
Wx:=k

JtK
(≤`;E=≤E ∪{(`, fence), (`, `′) | var(`) = var(`′)}).

Reads. Jr ← x; tK =
∑

n∈N Rx=n; Jt[n/r]K

Rx=0 Rx=1 . . .

Jt[0/r]K Jt[1/r]K . . .

Program. No interaction: Jt1 ‖ . . . ‖ tnK = Jt1K ‖ . . . JtnK.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 12 / 37

Wiring memory behaviour

The memory behaviour is speci�ed through consistent traces:

Cµ ::= Wx:=k · Cµ[x:=k] | fence · Cµ | Rx=µ(x) · Cµ

Theorem
For a machine state (p, µ), Tr(p, µ) = TrJpK ∩ Cµ.

But I promised an e.s. Jp, µK! (causally account for memory)

The causal account of memory can be de�ned as:

Cµ = {q | Tr(q) ∈ Cµ} ∈ Set(PO).

How to combine JpK and Cµ?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 13 / 37

Wiring memory behaviour

The memory behaviour is speci�ed through consistent traces:

Cµ ::= Wx:=k · Cµ[x:=k] | fence · Cµ | Rx=µ(x) · Cµ

Theorem
For a machine state (p, µ), Tr(p, µ) = TrJpK ∩ Cµ.

But I promised an e.s. Jp, µK! (causally account for memory)

The causal account of memory can be de�ned as:

Cµ = {q | Tr(q) ∈ Cµ} ∈ Set(PO).

How to combine JpK and Cµ?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 13 / 37

Wiring memory behaviour

The memory behaviour is speci�ed through consistent traces:

Cµ ::= Wx:=k · Cµ[x:=k] | fence · Cµ | Rx=µ(x) · Cµ

Theorem
For a machine state (p, µ), Tr(p, µ) = TrJpK ∩ Cµ.

But I promised an e.s. Jp, µK! (causally account for memory)

The causal account of memory can be de�ned as:

Cµ = {q | Tr(q) ∈ Cµ} ∈ Set(PO).

How to combine JpK and Cµ?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 13 / 37

Briding a gap: event-based and execution-based models

ES

`

Set(PO)

JpK

 Wx:=1_
��

Ry=2

,
Wx:=1_
��

Ry=3


Wx:=1_
��

Wx:=1_
��

Ry=2 Ry=3

C (·)

Pr(·)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 14 / 37

Briding a gap: event-based and execution-based models

ES

`

Set(PO)

JpK Cµ

 Wx:=1_
��

Ry=2

,
Wx:=1_
��

Ry=3


Wx:=1_
��

Wx:=1_
��

Ry=2 Ry=3

C (·)

Pr(·)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 14 / 37

Briding a gap: event-based and execution-based models

ES

`

Set(PO)

Wx:=14
yy

%%

Ry=2 Ry=3

 Wx:=1_
��

Ry=2

,
Wx:=1_
��

Ry=3



Wx:=1_
��

Wx:=1_
��

Ry=2 Ry=3

C (·)

Pr(·)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 14 / 37

Briding a gap: event-based and execution-based models

ES

`

Set(PO)

Wx:=14
yy

%%

Ry=2 Ry=3

 Wx:=1_
��

Ry=2

,
Wx:=1_
��

Ry=3



Wx:=1_
��

Wx:=1_
��

Ry=2 Ry=3

C (·)

Pr(·)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 14 / 37

Briding a gap: event-based and execution-based models

ES

`

Set(PO)

Wx:=14
yy

%%

Ry=2 Ry=3

 Wx:=1_
��

Ry=2

,
Wx:=1_
��

Ry=3


Wx:=1_
��

Wx:=1_
��

Ry=2 Ry=3

C (·)

Pr(·)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 14 / 37

Briding a gap: event-based and execution-based models

ES

`

Set(PO)

Wx:=14
yy

%%

Ry=2 Ry=3

 Wx:=1_
��

Ry=2

,
Wx:=1_
��

Ry=3


Wx:=1_
��

Wx:=1_
��

Ry=2 Ry=3

C (·)

Pr(·)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 14 / 37

A partial product on partial orders

Given two partial orders ≤q,≤q′ on the same carrier set, write:

q ∧ q′ =

{
(q ∪ q′)∗ if a partial order

unde�ned otherwise
.

 Wd:=17 Wf:=1 Rf=1

Rd=17


︸ ︷︷ ︸

∈JmpK

∧

 Wd:=17 Wf:=1 Rf=1

Rd=17


︸ ︷︷ ︸

∈Cµ

=

 Wd:=17 Wf:=1 Rf=1

Rd=17



 Wd:=17 Wf:=1 Rf=1

Rd=17

 ∧

 Wd:=17 Wf:=1 Rf=1

Rd=0

 = unde�ned

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 15 / 37

A partial product on partial orders

Given two partial orders ≤q,≤q′ on the same carrier set, write:

q ∧ q′ =

{
(q ∪ q′)∗ if a partial order

unde�ned otherwise
.

 Wd:=17 Wf:=1 Rf=1

Rd=17


︸ ︷︷ ︸

∈JmpK

∧

 Wd:=17 Wf:=1 Rf=1

Rd=17


︸ ︷︷ ︸

∈Cµ

=

 Wd:=17 Wf:=1 Rf=1

Rd=17



 Wd:=17 Wf:=1 Rf=1

Rd=17

 ∧

 Wd:=17 Wf:=1 Rf=1

Rd=0

 = unde�ned

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 15 / 37

A partial product on partial orders

Given two partial orders ≤q,≤q′ on the same carrier set, write:

q ∧ q′ =

{
(q ∪ q′)∗ if a partial order

unde�ned otherwise
.

 Wd:=17 Wf:=1 Rf=1

Rd=17


︸ ︷︷ ︸

∈JmpK

∧

 Wd:=17 Wf:=1 Rf=1

Rd=17


︸ ︷︷ ︸

∈Cµ

=

 Wd:=17 Wf:=1 Rf=1

Rd=17



 Wd:=17 Wf:=1 Rf=1

Rd=17

 ∧

 Wd:=17 Wf:=1 Rf=1

Rd=0

 = unde�ned

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 15 / 37

. . . generating a product on event structures

For P,Q ∈ Sets(PO), let:

P ? Q = {p ∧ q | p ∈ P, q ∈ Q}.

For E ,E ′ ∈ ES, let:

E ? E ′ = Pr(C (E) ? C (E ′)).

Theorem
Both operations are categorical products.

Note:
Tr(E ? E ′) = Tr(E) ∩ Tr(E ′)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 16 / 37

. . . generating a product on event structures

For P,Q ∈ Sets(PO), let:

P ? Q = {p ∧ q | p ∈ P, q ∈ Q}.

For E ,E ′ ∈ ES, let:

E ? E ′ = Pr(C (E) ? C (E ′)).

Theorem
Both operations are categorical products.

Note:
Tr(E ? E ′) = Tr(E) ∩ Tr(E ′)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 16 / 37

. . . generating a product on event structures

For P,Q ∈ Sets(PO), let:

P ? Q = {p ∧ q | p ∈ P, q ∈ Q}.

For E ,E ′ ∈ ES, let:

E ? E ′ = Pr(C (E) ? C (E ′)).

Theorem
Both operations are categorical products.

Note:
Tr(E ? E ′) = Tr(E) ∩ Tr(E ′)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 16 / 37

A �nal model

De�ne Jp, µK = Pr(C (JpK) ? Cµ). We have:

TrJp, µK = TrJpK ∩ TrJCµK = TrJpK ∩ Cµ = Tr(p, µ).

Yields the desired result:

Jmp, (x 7→ 0)K =

Wdata:=17 Wflag:=1 Rflag=0

Rdata=17 Rflag=1 Wflag:=1

Rdata=0

Wdata:=17

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 17 / 37

Wrapping up

I This architecture is a (huge) simpli�cation of ARM v8.0.
We can also model SC, TSO, ...

I By changing Cµ we get more or less compact event structures
that can be useful for veri�cation.
(Implementation in Herd in progress)

I The treatment of reorderings should make the model useful to
prove properties of architectures (eg. Data-Race-Freedom
theorems.)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 18 / 37

Wrapping up

I This architecture is a (huge) simpli�cation of ARM v8.0.
We can also model SC, TSO, ...

I By changing Cµ we get more or less compact event structures
that can be useful for veri�cation.
(Implementation in Herd in progress)

I The treatment of reorderings should make the model useful to
prove properties of architectures (eg. Data-Race-Freedom
theorems.)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 18 / 37

Wrapping up

I This architecture is a (huge) simpli�cation of ARM v8.0.
We can also model SC, TSO, ...

I By changing Cµ we get more or less compact event structures
that can be useful for veri�cation.
(Implementation in Herd in progress)

I The treatment of reorderings should make the model useful to
prove properties of architectures (eg. Data-Race-Freedom
theorems.)

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 18 / 37

II. What about non-first order languages?

5mins of game semantics a day keeps the syntax away

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 19 / 37

Nontrivial scopes
Imagine now our threads look like:

alloc(x);

alloc(y);

r ← x;

if(r = 1){y := 1}
dealloc(x); dealloc(y)

ax ay

Rx=0 Rx=1

Wy:=1

dx dx dy dy

Labels should now be:

Σ ::= · · · | ax | dx

Implicit allocation rules give Σ some structure:

ax

Wx:=k Rx=k dx

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 20 / 37

Nontrivial scopes
Imagine now our threads look like:

alloc(x);

alloc(y);

r ← x;

if(r = 1){y := 1}
dealloc(x); dealloc(y)

ax ay

Rx=0 Rx=1

Wy:=1

dx dx dy dy

Labels should now be:

Σ ::= · · · | ax | dx

Implicit allocation rules give Σ some structure:

ax

Wx:=k Rx=k dx

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 20 / 37

Nontrivial scopes
Imagine now our threads look like:

alloc(x);

alloc(y);

r ← x;

if(r = 1){y := 1}
dealloc(x); dealloc(y)

ax ay

Rx=0 Rx=1

Wy:=1

dx dx dy dy

Labels should now be:

Σ ::= · · · | ax | dx

Implicit allocation rules give Σ some structure:

ax

Wx:=k Rx=k dx

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 20 / 37

Nontrivial scopes
Imagine now our threads look like:

alloc(x);

alloc(y);

r ← x;

if(r = 1){y := 1}
dealloc(x); dealloc(y)

ax ay

Rx=0 Rx=1

Wy:=1

dx dx dy dy

Labels should now be:

Σ ::= · · · | ax | dx
Implicit allocation rules give Σ some structure:

ax

Wx:=k Rx=k dx

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 20 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory
alloc

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory
0xdead

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory
w(0xdead, 1)

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory
done

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory
r(0xdead)

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory
1

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory
d(0xdead)

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.

What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory

The protocol is described by the following partial order:

A =

alloc

done

wk r dealloc

done 0 1 . . .

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 21 / 37

Agent (or pre-strategy)
A agent on a A is an e.s. S and a labelling σ : S → A s.t.:

1. (Respects the rules) σ maps con�gurations of S to
down-closed subsets of A

2. (Linearity) σ is injective on con�gurations.

S A ‖ A
a a a a

done done done done

w1 w1 w2

done w2 done done

d done d d

d

σ

No explicit names: each event is below a unique a, in the game

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 22 / 37

Agent (or pre-strategy)
A agent on a A is an e.s. S and a labelling σ : S → A s.t.:

1. (Respects the rules) σ maps con�gurations of S to
down-closed subsets of A

2. (Linearity) σ is injective on con�gurations.

S A ‖ A
a a a a

done done done done

w1 w1 w2

done w2 done done

d done d d

d

σ

No explicit names: each event is below a unique a, in the game
Towards a causal and compositional operational semantics of programming languages · Simon Castellan 22 / 37

Agents and π-calculus

Consider A =

q

q tt �

tt �

.

Agents can be described by terms of the pi-calculus:

a : A `

a(x , rtt, rff). x̄(tt,ff). (tt(). rff ‖ ff (). rtt).

q

q

tt �

� tt

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 23 / 37

Agents and π-calculus

Consider A =

q

q tt �

tt �

.

Agents can be described by terms of the pi-calculus:

a : A ` a(x , rtt, rff).

x̄(tt,ff). (tt(). rff ‖ ff (). rtt).

q

q

tt �

� tt

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 23 / 37

Agents and π-calculus

Consider A =

q

q tt �

tt �

.

Agents can be described by terms of the pi-calculus:

a : A ` a(x , rtt, rff). x̄(tt,ff).

(tt(). rff ‖ ff (). rtt).

q

q

tt �

� tt

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 23 / 37

Agents and π-calculus

Consider A =

q

q tt �

tt �

.

Agents can be described by terms of the pi-calculus:

a : A ` a(x , rtt, rff). x̄(tt,ff).

(

tt().

rff ‖ ff (). rtt).

q

q

tt

�

� tt

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 23 / 37

Agents and π-calculus

Consider A =

q

q tt �

tt �

.

Agents can be described by terms of the pi-calculus:

a : A ` a(x , rtt, rff). x̄(tt,ff).

(

tt(). rff

‖ ff (). rtt).

q

q

tt

�

�

tt

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 23 / 37

Agents and π-calculus

Consider A =

q

q tt �

tt �

.

Agents can be described by terms of the pi-calculus:

a : A ` a(x , rtt, rff). x̄(tt,ff). (tt(). rff ‖ ff (). rtt).

q

q

tt �

� tt

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 23 / 37

Copycat, or the asynchronous forwarder
Given a game A, we write A⊥ for its dual. (polarity reversed)

For B =
q

tt �

, the copycat on B is the agent cc B :

B⊥ ‖ B

q

q

tt �

tt tt

(corresponding to the term:

a : B⊥, b : B ` b(rtt, rff). ā(tt,ff). (tt(). rtt ‖ tt(). rtt).

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 24 / 37

Restriction and composition

An agent on A⊥ ‖ B can be viewed as an agent from A to B :

σ : S → A⊥ ‖ B ⇔ ι : A⊥, o : B ` P.

Such agents can be composed:

σ : S →A⊥ ‖ B τ : T →B⊥ ‖ C ===⇒ τ � σ : T � S →A⊥ ‖ C

a : A⊥, b : B ` P b : B⊥, c : C ` Q ===⇒ a : A⊥, c : C ` (νb)(P ‖ Q)

In two steps:

1. Interaction of the common parts of σ and τ

2. Hiding of the events on B , invisible after composition.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 25 / 37

Restriction and composition

An agent on A⊥ ‖ B can be viewed as an agent from A to B :

σ : S → A⊥ ‖ B ⇔ ι : A⊥, o : B ` P.

Such agents can be composed:

σ : S →A⊥ ‖ B τ : T →B⊥ ‖ C ===⇒ τ � σ : T � S →A⊥ ‖ C

a : A⊥, b : B ` P b : B⊥, c : C ` Q ===⇒ a : A⊥, c : C ` (νb)(P ‖ Q)

In two steps:

1. Interaction of the common parts of σ and τ

2. Hiding of the events on B , invisible after composition.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 25 / 37

Restriction and composition

An agent on A⊥ ‖ B can be viewed as an agent from A to B :

σ : S → A⊥ ‖ B ⇔ ι : A⊥, o : B ` P.

Such agents can be composed:

σ : S →A⊥ ‖ B τ : T →B⊥ ‖ C ===⇒ τ � σ : T � S →A⊥ ‖ C

a : A⊥, b : B ` P b : B⊥, c : C ` Q ===⇒ a : A⊥, c : C ` (νb)(P ‖ Q)

In two steps:

1. Interaction of the common parts of σ and τ

2. Hiding of the events on B , invisible after composition.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 25 / 37

Restriction and composition

An agent on A⊥ ‖ B can be viewed as an agent from A to B :

σ : S → A⊥ ‖ B ⇔ ι : A⊥, o : B ` P.

Such agents can be composed:

σ : S →A⊥ ‖ B τ : T →B⊥ ‖ C ===⇒ τ � σ : T � S →A⊥ ‖ C

a : A⊥, b : B ` P b : B⊥, c : C ` Q ===⇒ a : A⊥, c : C ` (νb)(P ‖ Q)

In two steps:

1. Interaction of the common parts of σ and τ

2. Hiding of the events on B , invisible after composition.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 25 / 37

Composition: a bird's eye view

1. Interaction relies on the product of agents, generalizing the
product of labelled e.s.
→ Interaction σ and τ gives

τ ~ σ : T ~ S → A ‖ B ‖ C .

2. Hiding relies on projejection of event structures: events in B
become invisible.

τ � σ : T ~ S ↓ V → A ‖ B ‖ C V = τ ~ σ−1(A ‖ C).

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 26 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)

 a(tt,ff). tt.ff

‖b(rtt, rff). ā(tt,ff).

(
tt(). rtt

‖ff (). rff

)

σ not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)

 a(tt,ff). tt.ff

‖b(rtt, rff). ā(tt,ff).

(
tt(). rtt

‖ff (). rff

)

σ not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)

 a(tt,ff). tt.ff

‖b(rtt, rff). ā(tt,ff).

(
tt(). rtt

‖ff (). rff

)

σ not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)

 a(tt,ff). tt.ff

‖b(rtt, rff). ā(tt,ff).

(
tt(). rtt

‖ff (). rff

)

σ not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)

 a(tt,ff). tt.ff

‖b(rtt, rff). ā(tt,ff).

(
tt(). rtt

‖ff (). rff

)

σ not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)

 tt.ff

‖b(rtt, rff).

(
tt(). rtt

‖ff (). rff

)

σ not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)

 ff

‖b(rtt, rff).

(
rtt

‖ff (). rff

)

σ not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)


‖b(rtt, rff).

(
rtt

‖rff

)

σ not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

An example
Consider:

σ =
q

tt �

: ∅⊥ ‖ B τ = cc B : B⊥ ‖ B.

The interaction gives:

B ‖ B

q

q

tt �

tt �

(νa)


‖b(rtt, rff).

(
rtt

‖rff

)

σ not invariant under the asynchronous forwarder.
Towards a causal and compositional operational semantics of programming languages · Simon Castellan 27 / 37

Asynchrous agents, or strategies

Which agents σ satsify cc A � σ ∼= σ ?

De�nition
A strategy is an agent σ : S → A such that

1. S only adds immediate causal links � _ ⊕
2. S is cannot ignore (or duplicate) negative events.

Theorem (Rideau, Winskel)

An agent σ is a strategy if and only if cc A � σ ∼= σ.

→ Games and strategies model linear languages (compact-closed
category).

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 28 / 37

III. Interpreting functional programming languages

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 29 / 37

Local injectivity and copy indices

To represent nonlinear agents:

!+(

B ⇒ B

)

q

q

0

q

1

tt � tt �

tt

0

tt

1

tt

2

�

0

The labelling to B ⇒ B fails local injectivity.

→ We make the game bigger.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 30 / 37

Local injectivity and copy indices

To represent nonlinear agents:

!+(

B ⇒ B

)

q

q

0

q

1

tt � tt �

tt

0

tt

1

tt

2

�

0

The labelling to B ⇒ B fails local injectivity.

→ We make the game bigger.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 30 / 37

Local injectivity and copy indices

To represent nonlinear agents:

!+(B ⇒ B)

q

q0 q1

tt � tt �

tt0 tt1 tt2 �0

The labelling to B ⇒ B fails local injectivity.

→ We make the game bigger.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 30 / 37

Uniformity
To compose, Opponent must be allowed to be nonlinear as well:

B

q

tt tt

But strategies should be uniform.
(Uniformity is de�ned by using event structures with symmetry.)

Theorem (C., Clairambault, Winskel)
The following structure CHO is a model of higher-order computation:

I Types are interpreted by games,

I Terms Γ ` M : A are interpreted by uniform strategies !(JΓK⊥ ‖ JAK),

I Composition is: interaction + hiding.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 31 / 37

Uniformity
To compose, Opponent must be allowed to be nonlinear as well:

!+B
q

tt0 tt1

But strategies should be uniform.
(Uniformity is de�ned by using event structures with symmetry.)

Theorem (C., Clairambault, Winskel)
The following structure CHO is a model of higher-order computation:

I Types are interpreted by games,

I Terms Γ ` M : A are interpreted by uniform strategies !(JΓK⊥ ‖ JAK),

I Composition is: interaction + hiding.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 31 / 37

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

!B
q0 q1 . . .

tt0 tt1 tt0 tt1

But strategies should be uniform.
(Uniformity is de�ned by using event structures with symmetry.)

Theorem (C., Clairambault, Winskel)
The following structure CHO is a model of higher-order computation:

I Types are interpreted by games,

I Terms Γ ` M : A are interpreted by uniform strategies !(JΓK⊥ ‖ JAK),

I Composition is: interaction + hiding.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 31 / 37

Uniformity
To compose, Opponent must be allowed to be nonlinear as well:

!B
q0 q1 . . .

tt0 tt1 tt3 tt4︸ ︷︷ ︸
uniform

!B
q2i q2i+1

tt0 �0︸ ︷︷ ︸
non uniform

But strategies should be uniform.
(Uniformity is de�ned by using event structures with symmetry.)

Theorem (C., Clairambault, Winskel)
The following structure CHO is a model of higher-order computation:

I Types are interpreted by games,

I Terms Γ ` M : A are interpreted by uniform strategies !(JΓK⊥ ‖ JAK),

I Composition is: interaction + hiding.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 31 / 37

Uniformity
To compose, Opponent must be allowed to be nonlinear as well:

!B
q0 q1 . . .

tt0 tt1 tt3 tt4︸ ︷︷ ︸
uniform

!B
q2i q2i+1

tt0 �0︸ ︷︷ ︸
non uniform

But strategies should be uniform.
(Uniformity is de�ned by using event structures with symmetry.)

Theorem (C., Clairambault, Winskel)
The following structure CHO is a model of higher-order computation:

I Types are interpreted by games,

I Terms Γ ` M : A are interpreted by uniform strategies !(JΓK⊥ ‖ JAK),

I Composition is: interaction + hiding.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 31 / 37

An example of higher-order
Consider the call-by-name program

strict = λf . new r in f (r := 1; 1); !r = 1 : (N⇒ N)⇒ B.

(N ⇒ N) ⇒ N
q

q

q k

1 tt �

If f is concurrent with control operators, strict exhibits a race.

Theorem
CHO can interpret concurrent languages, adequately for may:

M ⇓⇔ JMK contains a positive move.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 32 / 37

An example of higher-order
Consider the call-by-name program

strict = λf . new r in f (r := 1; 1); !r = 1 : (N⇒ N)⇒ B.

(N ⇒ N) ⇒ N
q

q

q k

1 tt �

If f is concurrent with control operators, strict exhibits a race.

Theorem
CHO can interpret concurrent languages, adequately for may:

M ⇓⇔ JMK contains a positive move.
Towards a causal and compositional operational semantics of programming languages · Simon Castellan 32 / 37

Hidden divergences
However, in nondetermistic languages convergence is more subtle:

M = λb. (if b then loop else tt).

Does M choice converge?

JMK

choice

:

B ⇒

B

q

tt

As a result: JM choiceK = JttK.

Model inadequate for non-angelic convergences!

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 33 / 37

Hidden divergences
However, in nondetermistic languages convergence is more subtle:

M = λb. (if b then loop else tt).

Does M choice converge?

JMK

choice

: B ⇒ B

q

q

tt �

tt

As a result: JM choiceK = JttK.

Model inadequate for non-angelic convergences!

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 33 / 37

Hidden divergences
However, in nondetermistic languages convergence is more subtle:

M = λb. (if b then loop else tt).

Does M choice converge?

JMK ~ choice :

B ⇒

B

q

q

tt �

tt

As a result: JM choiceK = JttK.

Model inadequate for non-angelic convergences!

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 33 / 37

Hidden divergences
However, in nondetermistic languages convergence is more subtle:

M = λb. (if b then loop else tt).

Does M choice converge?

JMK� choice :

B ⇒

B

q

q

tt �

tt

As a result: JM choiceK = JttK.

Model inadequate for non-angelic convergences!
Towards a causal and compositional operational semantics of programming languages · Simon Castellan 33 / 37

Essential events

Idea: never hide essential events appearing in a con�ict:

JMK ~ choice : B

q

q

tt �

tt

Strategies become partial maps S ⇀ A (with internal events).

Theorem (C., Clairambault, Hayman, Winskel)

The partial strategies τ ~ σ and τ } σ are weakly bisimilar.

→ Partial hiding does not lose behaviour up to weak bisimilarity.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 34 / 37

Essential events

Idea: never hide essential events appearing in a con�ict:

JMK } choice : B

q

q

? ?

tt

Strategies become partial maps S ⇀ A (with internal events).

Theorem (C., Clairambault, Hayman, Winskel)

The partial strategies τ ~ σ and τ } σ are weakly bisimilar.

→ Partial hiding does not lose behaviour up to weak bisimilarity.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 34 / 37

The category CHO}

Despite not hiding everything, we still get a category:

Theorem (C.)

The following model CHO} is a model of higher-order computation:

I Types are interpreted as in CHO,

I Terms are interpreted by strategies with internal events,

I Composition is: interaction + partial hiding.

Moreover CHO} interprets nondeterministic languages, adequately

for non-angelic convergences (must, fair), ...

In CHO}, one can de�ne intensional, causal, compositional

semantics for a wide variety of languages.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 35 / 37

Related work
Earlier work / inspirations:

I Melliès's asynchronous games.
Traces augmented with 2-dimensional tiles representing
independence.

I Curien, Faggian, Piccolo, l-nets.
Partial order representation for ludics.

Parallel works:

I Hirschowitz et. al.: preseheaves over graphs. (no hiding)
Gives intensional models of π-calculus fully abstract for fair
convergence.

I Ong, Tsukada: presheaves over plays.
Models of nondeterministic, concurrent languages.

On causal models for weak memory models:

I Je�rey & Riley, Brookes et. al., Pichon et. al.

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 36 / 37

Extensions / Other work
Axis of development:

1. Understanding the structure of strategies.
Which strategies are expressible using which e�ects?
→ Fully abstract models of extensions of PCF. (With

Clairambault, and Winskel)

2. Adding quantitive information.

I probabilities (full abstraction for probabilistic PCF) (With
Clairambault, Paquet and Winskel)

I quantum (WIP by Clairambault, De Visme, Winskel)

3. Modelling complex languages. Work in progress:

I Complex memory models (with Alglave and Madiot),

I Session π-calculus (with Clairambault and Yoshida).

Towards a causal and compositional operational semantics of programming languages · Simon Castellan 37 / 37

