Towards a causal and compositional operational
semantics of programming languages

Simon Castellan!

Limperial College London, UK

November 21th, 2016
LSV Seminar

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v « data}

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 2/37

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v « data}

Possible execution traces on my computer:

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

2/37

Message-passing on my computer

Consider this program mp:

data = flag =10
r < flag;
if(r == 1){v « data}

data
flag:=1

Possible execution traces on my computer:

> VWdata

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

2/37

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag if(r == 1){v < data}

Possible execution traces on my computer:

> Waata:=17 - flag

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

2/37

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r flag
flag:=1 if(r == 1){v « data}

Possible execution traces on my computer:

> Waata:=17 - wflag::l *fflag

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

2/37

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag:=1 r v < data

Possible execution traces on my computer:

> Waata:=17 - wflag::l : R-flag:l * Ndata

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 2/37

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v « data}

Possible execution traces on my computer:
> Waata:=17 - wflag::l : R-flag:l - Raata=17
> Waata:=17 - Rflag:O : wflag::l

> R:Elag:O “Waata:=17 - wflag::l

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 2/37

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17
> Waata:=17 - Rflag:O : wflag::l

> Rflag:O - Waata:=17 - wflag::l

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 3/37

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag =1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17

> Waata:=17 - Rflag:O : wflag::l

v

Rflag:O - Waata:=17 - wflag::l

v

wflag::l

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 3/37

Message-passing on my phone

data = flag =10
data :=17; || r + flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17

> Waata:=17 - Rflag:O : wflag::l

v

Rflag:O - Waata:=17 - wflag::l

v

Welagi=1 * Rflag—1

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 3/37

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17

> Waata:=17 - Rflag:O : wflag::l

v

Rflag:O - Waata:=17 - wflag::l

v

Welag:=1 - Rf1ag=1 - Raata—0

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 3/37

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 - wflag::l : Rflag:l - Raata=17
> Waata:=17 - Rflag:O : wflag::l
> Rflag:O - Waata:=17 - wflag::l

> wflag::l . Rflag:l - Raata=0 - Waata:=17

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

3/37

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> wdata::l? : wflag::l : Rflag:l : Rdata:l?
> Waata:=17 - Rflag:O : wflag::l
> Rflag:O - Waata:=17 - wflag::l
> Weiag:=1 * Rf1ag=1 - Raata=0 - Waata:=17
> Weiag:=1 - Re1ag=1 - Waata:=17 - Raata=17
> Weiag:=1 * Waata:=17 - Rf1ag=1 - Raata=17
> Rflag:O : Wflag::l “Waata:=17
A different architecture, much harder to reason about. ..

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 3/37

Structure behind traces

Wflag::l Waata:=17 - R-flag:l - Rdata=17
Wflag::l : Rflag:l “Waata:=17 - Raata=17

Waata:=17 wflag::l : R-flag:l - Raata=17

{ Wflag::l : Rflag:l " Raata=0 - Waata:=17

Rflag:O - Waata:=17 - wflag::l
Waata:=17 - Rflag:O ’ wflag::l

Rflag=0 - Welag:=1 - Waata:=17

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 4 /37

Structure behind traces

Welag:=1 - Waata:=17 - Rf1ag=1 - Raata=
flag:=1 data:=17 flag=1 data=17 Wflag::l Waata:—17
Wflag::l : Rflag:l “Waata:=17 - Raata=17 v %

Waata:=17 wflag::l : R-flag:l - Raata=17 Rflagzl —> Raata=17

{ wflag::l : Rflag:l " Raata=0 - Waata:=17

Rflag:O - Waata:=17 - wflag::l
Waata:=17 - Rflag:O ’ wflag::l

Rflag=0 - Welag:=1 - Waata:=17

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

4/37

Structure behind traces

Wflag::l Waata:=17 - R-flag:l - Rdata=17
Wflag::l : Rflag:l “Waata:=17 - Raata=17

Waata:=17 wflag::l : R-flag:l - Raata=17

{ wflag::l : Rflag:l " Raata=0 - Waata:=17

Rflag:O - Waata:=17 - wflag::l
Waata:=17 - Rflag:O ’ wflag::l

Rflag=0 - Welag:=1 - Waata:=17

Wflag::l Waata:=17
v v

Rflag:l —> Raata=17

wflag::l Raata=0
v

Rflag:l Waata:=17

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

4/37

Structure behind traces

Welag:=1 - Waata:=17 - Rf1ag=1 - Raata=
flag:=1 data:=17 flag=1 data=17 Wflag::l Waata:—17
Wflag::l : Rflag:l “Waata:=17 - Raata=17 v %

Waata:=17 wflag::l : R-flag:l - Raata=17 Rflagzl —> Raata=17

wflag::l Rdata:O
{ wflag::l : Rflag:l Raata=0 * Waata:=17 v /v Y&

Rflag:l Waata:=17

Rflag:O “Waata:=17 - wflag::l Rflag*O Wanta:—17
Waata:=17 - Rflag:O : wflag::l v

Rflag=0 - Welag:=1 - Waata:=17 Welag:=1

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

4/37

Structure behind traces

Welag:=1 - Waata:=17 - Re1ag=1 - Rdata=1
ag: ata:=17 ag ata=17 Wflag::]_ Waata:=17

Wflag::l : Rflag:l “Waata:=17 - Raata=17 V4 v

Waata:=17 - Wriag:=1 - Re1ag=1 - Raata=17 Rf1ag=1 > Rdata=17

wflag::l Raata=0
{ wflag::l : Rflag:l " Raata=0 - Waata:=17 V4 /v Jy

R-flag:l Waata:=17

Retag—0 - Wancarm17 - Welagie
flag=0 data:=17 flag:=1 Rflag:O Wanta:—17
Waata:=17 - Rflag:O : wflag::l V4

Rflag=0 - Welag:=1 - Waata:=17 Welag:=1

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

4/37

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

wflag::l
Y
wflag::l Waata:=17 Rflag:l Rflag:O Waata:=17
% v v %
Rflag:l —- Rdata:17 Rdatazo wdata::l
Y
Waata:=17

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 5 /37

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

wflag::l

Y
wflag::l Waata:=17 Rflag:l Rflag:O Waata:=17
% v v %
Rflag:l —- R'data:17 Rdatazo wdata::l

Y

Waata:=17

This set of partial orders can be summed by an event structure:

Waata:=17 Weilag:=1 ~~ Re1ag=0
v v v
Riata=17 <— Rf1ag=1 Wsiag:=1

el Y
Raata=0
v

Waata:=17

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

5/37

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

wflag::l
wflag::l Waata:=17 Rflag:l Rflag:O Waata:=17
’ Vb’ ’
Rflag:l - R'data:17 Rdata:O wdata::l
Waata:=17

This set of partial orders can be summed by an event structure:

Waata:=17 Weilag:=1 ~~ Re1ag=0
Riata=17 <— Rf1ag=1 Weiag:=1
R

Raata=0

Waata:=17

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

5/37

This talk

1. Modelling a first-order programming language.
With relaxed shared memory.

2. When actions become contextual.
An introduction to game semantics for higher-order languages.

3. Interpretating a higher-order language, adequately.
With concurrency & non-determinism.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

w

N

I. MODELLING A FIRST-ORDER PROGRAMMING LANGUAGE

An ARM-like semantics for a toy language

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

7/37

An assembly language with relaxed semantics

Syntax. ldents split in thread-local registers and global variables.
ex=rlete|...
ti=fence;t|x:=et|r<xt
pu=t]| ... |t

Actions. We observe the following actions from the programs:

Y =W,.—k | Ry—k | fence.

Semantics. Described by a labeled transition system on states p, u:

(pOu) “= (pey). (up :Var —N)
It is relaxed: operations on independent variables can be reordered.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 8 /37

A few rules
Thread rules: (t @ p) EN (ouy:

(x := ki top) = (topf = k])

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 9/37

A few rules
Thread rules: (t @ p) EN (ouy:

ence

(x = k; t@ﬂ> 5 (teu[x = k]) (fence; tOu) —— (tOu)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 9/37

A few rules
Thread rules: (t @ p) EN (ouy:

ence

(x = k; t@ﬂ> 5 (teu[x = k]) (fence; tOu) —— (tOu)

(tep) 4 (t'ou') { #+ fence var({) # x

(x = k; tQpu) LN (x = k; t'ou’)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 9/37

A few rules
Thread rules: (t @ p) EN (ouy:

ence

(x 1= ki tou) == (teu[x := k]) (fence; tou) % (teu)
(top) 5 (foy/) €+ fence var(f) #x
(x = ki tou) 5 (x = k; t'op)
And then:
(t: @) 5 (0)
ol el @) S (o e [@)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 9/37

A few rules
Thread rules: (t @ p) EN (ouy:

ence

(x = ki tQu) =5 (top[x == k]) (fence; teu) 2% (tou)
(top) 5 (foy/) €+ fence var(f) #x
(x = ki tou) 5 (x = k; t'op)
And then:
(t: @) 5 (0)
et) St])

This generates the operational (partial) traces:

Tr(p,p) = {l1.. . Lo | (p@u) 2 ... L2 (p/ @)}

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 9/37

Labeled event structures

Definition a2 b
A (X-labeled) event structure is a tuple S v
(E,<g,te,0: E — X) where (E,<g) is a partial c d
order and fg is a symmetric relation on E, ‘Z

satisfying finite causes and conflict inheritance.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 10 /37

Labeled event structures

Definition

A (X-labeled) event structure is a tuple L
(E,<g,te,0: E — X) where (E,<g) is a partial d
order and fg is a symmetric relation on E,
satisfying finite causes and conflict inheritance.

o <t

» Configurations are downclosed, conflict-free subsets of E.
% '(E) is the set of configurations of E.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 10 /37

Labeled event structures

Definition

A (X-labeled) event structure is a tuple Y
(E,<g,tg, 0 E — X) where (E,<g) is a partial
order and fg is a symmetric relation on E,
satisfying finite causes and conflict inheritance.

o <+

» Configurations are downclosed, conflict-free subsets of E.
% (E) is the set of configurations of E.

» A trace of E is a linearisation of a configuration of E.
Tr(E) is the set of traces of E (can be seen as a subset of L*).

Our goal: a mapping [-] from states to event structures s.t.:

Tr(p, u) = Tr[p, ul.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 10 /37

An overview of the semantics

1. Thread semantics: context is left open (and unknown)

T

Wflag::l Waata:=17 Rflag:O ~ Rflag:l ~~- R-flag:2
x~ v

Rdata:O ~ Raata=1 ~~ ...

2. Final semantics: context is assumed empty
Compute interactions with memory:

Waata:=17 W:IElag::l ~ Rflag:O
Raata=17 <— Rflag=1 Wfiag:=1
'\,\/»\’ n
Rata=0

Waata:=17

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 11 /37

Thread semantics

fence
Fences. [fence;t] = fence - [t] v

(See=<g U{(£.0)}) [t]

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 12 /37

Thread semantics

Fences. [fence;t] = fence - [t]

(See=<e U{(£,)})

Writes. [x := k; t] = We.—k; [t]

(<e.e=<r U{({, fence), (¢,) | var () = var(£)}).

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

fence

[t]

Wx::k

&[[tﬂg

12 /37

Thread semantics

Fences. [fence;t] = fence - [t]

(See=<e U{(£,)})

Writes. [x := k; t] = We.—k; [t]

(<e.e=<r U{({, fence), (¢,) | var () = var(£)}).

Reads. [r < x;t] = > o Re=n: [t[n/r]]

Rx:O Rx:l

gﬂt[o/f]]]é éﬂt[l/f]ﬂé

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

fence

[t]

Wx::k

&[[tﬂg

12 /37

Thread semantics

Fences. [fence;t] = fence - [t] feice
(<ee=e UL OO .
Wy=k
Writes. [x := k; t] = Wy.—k;] & Q
_ : _ : [t]
(<p.e=<g U{({,fence), (¢, V') | var(f) = var(¢')}).
Reads. [r < x;t] = > o Re=n: [t[n/r]]
Rx:O Rx:l
gﬂf[o/f]ﬂé éﬂf[l/f]ﬂé
Program. No interaction: [ty || ... || ta] = [ta] || - - - [ta]-

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 12 /37

Wiring memory behaviour

The memory behaviour is specified through consistent traces:

Cu =Wy - C,u[x::k] | fence - Cu | Riep(z) Cu

Theorem
For a machine state (p, 1), Tr(p,) = Tr[p] N Cy.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 13 /37

Wiring memory behaviour

The memory behaviour is specified through consistent traces:

Cu =Wy - C#[X::k] | fence - Cu | Riep(z) Cu

Theorem
For a machine state (p, 1), Tr(p,) = Tr[p] N Cy.

But | promised an e.s. [p, u]! (causally account for memory)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 13 /37

Wiring memory behaviour

The memory behaviour is specified through consistent traces:

Cu =Wy - C#[X::k] | fence - Cu | Riep(z) Cu

Theorem
For a machine state (p, 1), Tr(p,) = Tr[p] N Cy.

But | promised an e.s. [p, u]! (causally account for memory)

The causal account of memory can be defined as:
%, = {q] x(q) € G} € Set(PO).

How to combine [p] and %,?

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 13 /37

Briding a gap: event-based and execution-based models

ES

[Pl

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 14 /37

Briding a gap: event-based and execution-based models

ES Set(PO)

[Pl G

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 14 /37

Briding a gap: event-based and execution-based models

Wx::l Wx::l
Vo, 0
Ry—2 Ry=3

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 14 /37

Briding a gap: event-based and execution-based models
%()

ES—_ se(Po)

\ Wx;:l Wx;:]_
[2]
Ry—2 Ry=3

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 14 /37

Briding a gap: event-based and execution-based models

%()

\ Wx;:l Wx;:]_
[2N
Ry—2 Ry=3
Wymqg ~Wyeq /
¥ ¥

Ry—2 Ry=3

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 14 /37

Briding a gap: event-based and execution-based models

%()

Wi=1 Wx=1
R
Ry—2 Ry=3
Wymqg ~Wyeq /
¥ ¥

Ry—2 Ry=3

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 14 /37

A partial product on partial orders

Given two partial orders <q, <q on the same carrier set, write:

(quq’)* if a partial order

AN =
a7 undefined otherwise

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 15 /37

A partial product on partial orders

Given two partial orders <q, <q on the same carrier set, write:

N (quq’)* if a partial order
qhg = .) .
undefined otherwise
Wa:=17 We=1 Remy A Wa:=17 W1 — Rea _ Wa:=17 Wg=1> Remy
Ra=17 . Ra=17] Ra=17

€[mp] €Cu

A partial product on partial orders

Given two partial orders <q, <q on the same carrier set, write:

1\ * . .
ang = (quq’) if a partial order
undefined otherwise
Wa=17 We=1 Ri=m A Wa:=17 We=1 —> Re=1 _ Wa=17 We:=15 Rem
Ra=17 - Ra=17 ‘Ra=17
c) B
Wa:=17 We=1 Re= Wa:=17 > Wemg > Rea .
A A = undefined
Ra=17 Ra—o

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 15 /37

... generating a product on event structures

For P, Q € Sets(PO), let:

PxQ@={pAq|peP,qgeQ}

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 16 /37

.generating a product on event structures

For P, Q € Sets(PO), let:

PxQ@={pAq|peP,qgeQ}

For E, E' € ES, let:

ExE' =Pr(¢(E)*%(E")).

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 16 /37

.generating a product on event structures

For P, Q € Sets(PO), let:

PxQ@={pANqg|peP,qgecQ}.

For E,E' € ES, let:
ExE' =Pr(¢(E)*%(E")).

Theorem
Both operations are categorical products.

Note:
Tr(E x E') = Tr(E) N Tx(E")

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 16 /37

A final model

Define [p, u] = Pr(€([p]) * €,.). We have:

Tr[p, u] = Tr[p] N Tx[€.] = Tr[p] N Cu = Tr(p, p).

Yields the desired result:
Waata:=17 wflag::l ~ Rflag:O
Raata=17 < Rf1ag=1 Wilag:=1
[mp, (x — 0)] = o

Rgata=0

Wdata::l?

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 17 /37

Wrapping up

» This architecture is a (huge) simplification of ARM v8.0.
We can also model SC, TSO, ...

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 18 /37

Wrapping up

» This architecture is a (huge) simplification of ARM v8.0.
We can also model SC, TSO, ...

» By changing %), we get more or less compact event structures
that can be useful for verification.
(Implementation in Herd in progress)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 18 /37

Wrapping up

» This architecture is a (huge) simplification of ARM v8.0.
We can also model SC, TSO, ...

» By changing %), we get more or less compact event structures
that can be useful for verification.
(Implementation in Herd in progress)

» The treatment of reorderings should make the model useful to
prove properties of architectures (eg. Data-Race-Freedom
theorems.)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 18 /37

II. WHAT ABOUT NON-FIRST ORDER LANGUAGES?

5mins of game semantics a day keeps the syntax away

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 19 /37

Nontrivial scopes

Imagine now our threads look like:

alloc(x);

alloc(y);

r 4 x;

if(r=1){y =1}
dealloc(x);dealloc(y)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 20 /37

Nontrivial scopes

Imagine now our threads look like:

alloc(x);
alloc(y);
r 4 x;

if(r=1){y =1}
dealloc(x);dealloc(y)

Labels should now be:

Y= |ay | ds

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 20 /37

Nontrivial scopes

Imagine now our threads look like:

alloc(x); ay ay

alloc(y); R.—0 {le J7
~A

r<— x;
if(r=1){y =1} l l Wy

dealloc(x);dealloc(y)

Labels should now be:

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 20 /37

Nontrivial scopes

Imagine now our threads look like:

alloc(x); o i; ”
alloc(y); Ry—g ~ Ry—1 J7
~A

r<— x;
if(r=1){y =1} l l Wy

dealloc(x);dealloc(y) d d (Y d
% % y - Ay

Labels should now be:
YYo=]ay|ds

Implicit allocation rules give ¥~ some structure:

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

20/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread

memory

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

21/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread

alloc

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

memory

21/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread

memory

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

21/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread

w(Oxdead, 1)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

memory

21/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread

memory

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

21/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread

r(Oxdead)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

memory

21/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread

memory

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

21/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread

d(0Oxdead)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

memory

21/37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory

The protocol is described by the following partial order:

alloc

v
A= WkA/ \Ar\b
Y '

dealloc

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 21 /37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory

The protocol is described by the following partial order:

alloc

v
A= WkA/ \Ar\b
Y a

dealloc

Such a partial order with polarity annotations is a game.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 21 /37

Protocols as types

Interaction thread/memory is an interaction client/server:

thread memory

The protocol is described by the following partial order:

alloc

v
A= WkA/ \Ar\b
Y a

dealloc

Such a partial order with polarity annotations is a game.
What is an event structure labelled by a game?

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 21 /37

Agent (or pre-strategy)
A agentona Aisanes. Sand a labellingo: S — As.t.:
1. (Respects the rules) o maps configurations of S to
down-closed subsets of A
2. (Linearity) o is injective on configurations.

S 7 A | A
a a a a
v v v v
v v v
W1 W1 w2
v i v v
—D W2
y ! y y
d d d
v
d

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 22 /37

Agent (or pre-strategy)
A agentona Aisanes. Sand a labellingo: S — As.t.:
1. (Respects the rules) o maps configurations of S to
down-closed subsets of A
2. (Linearity) o is injective on configurations.

S 7 A | A
a a a a
v v v v
v v v
W1 W1 w2
v i v v
—D W2
y ! y y
d d d
v
d

No explicit names: each event is below a unique a, in the game

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 22 /37

Agents and 7-calculus

q
AR
Consider A = q D/tt

PR
tt ff

ff

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 23 /37

Agents and 7-calculus

v
¥

Consider A =

Agents can be described by terms of the pi-calculus:

a: Ak a().

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 23 /37

Agents and 7-calculus

R
Consider A = q D/;i ff

X ™
Agents can be described by terms of the pi-calculus:

a: Akl a(x, rtt, rff). x()-

/

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 23 /37

Agents and 7-calculus

R
Consider A = q D/;i ff

X ™
Agents can be described by terms of the pi-calculus:

a: Al a(x, rtt, rff). x(tt,). tt().

/

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 23 /37

Agents and 7-calculus

R
Consider A = q D/i
X ™

ff -

Agents can be described by terms of the pi-calculus:

a: Al a(x, rtt, rff). x(tt, ff). tt(). rff

A/

q
4

S

ff

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

23/37

Agents and 7-calculus

R
Consider A = q D/;i ff .

X ™
Agents can be described by terms of the pi-calculus:

a: Al a(x, rtt, rff). 2(tt, fF). (tt(). rfF || #(). rtt).

A/

q
PR

S

ff tt

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

23/37

Copycat, or the asynchronous forwarder
Given a game A, we write A* for its dual. (polarity reversed)

For B = X a the copycat on B is the agent cp:
tt ff

Bt I B

(corresponding to the term:

a: Bt b: Bt b(rtt, rff). 3(tt, fF). (t1(). it || t1(). 7EE).

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

24 /37

Restriction and composition

An agent on AL || B can be viewed as an agent from A to B:

0c:S— A B & 1AM o:BFP.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 25 /37

Restriction and composition

An agent on AL || B can be viewed as an agent from A to B:
0c:S— A B & 1AM o:BFP.
Such agents can be composed:

:SSAM B 7T =B | C=— :TOS =AM C

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 25 /37

Restriction and composition

An agent on AL || B can be viewed as an agent from A to B:
0c:S— A B & 1AM o:BFP.
Such agents can be composed:

:SSAM B 7T =B | C=— :TOS =AM C
a:AL,b:BI— b:BL,c:CI— —_ -

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 25 /37

Restriction and composition

An agent on AL || B can be viewed as an agent from A to B:
0c:S— A B & 1AM o:BFP.

Such agents can be composed:

:SAY B 7:T =BT || (= :TOS—A|C
a:Atb:B+FP b:Btc:CHQ=— -
In two steps:

1. Interaction of the common parts of o and 7

2. Hiding of the events on B, invisible after composition.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 25 /37

Composition: a bird’s eye view

1. relies on the product of agents, generalizing the
product of labelled e.s.
— Interaction o and 7 gives

T®o: T®S—>A|B| C.

2. relies on projejection of event structures: events in B
become invisible.

TOo:T®S|LV S A|B|C V=r®c (A] Q).

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 26 /37

An example
Consider:;

o=y 0t B rt=cp:B+|B.
tt —> ff

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 27 /37

An example
Consider:;

7= ¥

tt —> ff

The interaction gives:

tt —> ff

T

tt ff

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

r=cp:B'| B

27 /37

An example
Consider:
4 1 1
o=y 0B 71=c¢cp:B|B.
tt —> ff

The interaction gives:

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 27 /37

An example
Consider:;

o=y 0t B rt=cp:B+|B.
tt —> ff

The interaction gives:

a(tt, ff). tt. ff

q va _ tt(). rit
Y : || b(rtt, rff). a(tt,). <||ff()rff>

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 27 /37

An example
Consider:;

o=y 0t B rt=cp:B+|B.
tt —> ff

The interaction gives:

B | B
- L
(va) tt(). 7t
/ 1 5(rtt, rfF). <”ffo.rﬁ>
tt %
> <

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 27 /37

An example
Consider:;

o=y 0t B rt=cp:B+|B.
tt —> ff

The interaction gives:

B I B
/ - fE
q (va) rtt
K_D) || b(rtt, rfF). <Hff().rff>
\}?\Aﬁ

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 27 /37

An example
Consider:;

o=y 0t B rt=cp:B+|B.
tt —> ff

The interaction gives:

/ e -
|| b(rtt, rff). <H rff)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 27 /37

An example
Consider:;

o=y 0t B rt=cp:B+|B.
tt —> ff

The interaction gives:

q o a) rtt
, o | 6(rtt, rfF). <Hrﬁ>

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 27 /37

An example
Consider:;

o=y 0t B rt=cp:B+|B.
tt —> ff

The interaction gives:

- .

q . a) rtt
, o | 6(rtt, rfF). (Hrff>

tt —> ff

\}V\Aq

tt ff

o not invariant under the asynchronous forwarder.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 27 /37

Asynchrous agents, or strategies

Which agents o satsify €4 o0 Z o 7
Definition
A strategy is an agent o : S — A such that

1. S only adds immediate causal links © — @

2. S is cannot ignore (or duplicate) negative events.

Theorem (Rideau, Winskel)

An agent o is a strategy if and only if cp©® o = 0.

— Games and strategies model linear languages (compact-closed
category).

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 28 /37

ITI. INTERPRETING FUNCTIONAL PROGRAMMING LANGUAGES

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 29 /37

Local injectivity and copy indices

To represent nonlinear agents:

B = B

tt ff ff
tt tt tt ff

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 30 /37

Local injectivity and copy indices

To represent nonlinear agents:

B = B
X'V Y™

The labelling to B = B fails local injectivity.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 30 /37

Local injectivity and copy indices

To represent nonlinear agents:

B = B
qV‘
X'V Y™

The labelling to B = B fails local injectivity.

— We make the game bigger.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 30 /37

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:
B

X' ™
tt tt

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 31 /37

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

B

X' ™
tt tt

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 31 /37

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

B

tto tt

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 31 /37

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

'B 'B
0 1 RN 2 2i+1
X X v v
ttg tty tt3 tty ttg ffg
uniform non uniform

But strategies should be uniform.
(Uniformity is defined by using event structures with symmetry.)

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 31 /37

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

'B 'B
0 1 RN 2 2i+1
X X v v
ttg tty tt3 tty ttg ffg
uniform non uniform

But strategies should be uniform.
(Uniformity is defined by using event structures with symmetry.)

Theorem (C., Clairambault, Winskel)

The following structure CHO is a model of higher-order computation:
> Types are interpreted by games,
» TermsT = M : A are interpreted by uniform strategies \([[]* || [A]),

» Composition is: interaction + hiding.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 31 /37

An example of higher-order
Consider the call-by-name program

strict = AMf.new rin f(r:=1;1);!r=1: (N=N) = B.

(N = N = N

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

32/37

An example of higher-order
Consider the call-by-name program

strict = AMf.new rin f(r:=1;1);!r=1: (N=N) = B.

(N = N = N

/

e
YWH

If f is concurrent with control operators, strict exhibits a race.

Theorem

CHO can interpret concurrent languages, adequately for may:

M < [M] contains a positive move.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

32/37

Hidden divergences

However, in nondetermistic languages convergence is more subtle:
M = \b. (if b then loop else tt).

Does M choice converge?

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 33 /37

Hidden divergences
However, in nondetermistic languages convergence is more subtle:

M = \b. (if b then loop else tt).

Does M choice converge?

[M] : B

q/
4
\

B

4

tt

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 33 /37

Hidden divergences
However, in nondetermistic languages convergence is more subtle:

M = \b. (if b then loop else tt).

Does M choice converge?

[M] ® choice : B

q4/

tt ~~nne ff

T

tt

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 33 /37

Hidden divergences
However, in nondetermistic languages convergence is more subtle:

M = \b. (if b then loop else tt).

Does M choice converge?

[M] ® choice : B
q f/
X ™
tt - fE
S~

As a result: [M choice] = [tt].

Model inadequate for non-angelic convergences!

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 33 /37

Essential events

Idea: never hide essential events appearing in a conflict:

[M] ® choice : B
q —
X4
tt v ff
tt

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 34 /37

Essential events

Idea: never hide essential events appearing in a conflict:

[M] ® choice : B

Strategies become partial maps S — A (with internal events).

Theorem (C., Clairambault, Hayman, Winskel)
The partial strategies T ® o and T © o are weakly bisimilar.

— Partial hiding does not lose behaviour up to weak bisimilarity.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 34 /37

The category CHOy,

Despite not hiding everything, we still get a category:

Theorem (C.)
The following model CHOg, is a model of higher-order computation:

> Types are interpreted as in CHO,
> Terms are interpreted by strategies with internal events,

» Composition is: interaction + partial hiding.

Moreover CHOg interprets nondeterministic languages, adequately
for non-angelic convergences (must, fair), ...

In CHOg), one can define intensional, causal, compositional
semantics for a wide variety of languages.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 35 /37

Related work
Earlier work / inspirations:

» Melliés's asynchronous games.
Traces augmented with 2-dimensional tiles representing
independence.

» Curien, Faggian, Piccolo, I-nets.
Partial order representation for ludics.

Parallel works:

» Hirschowitz et. al.: preseheaves over graphs. (no hiding)
Gives intensional models of 7-calculus fully abstract for fair
convergence.

» Ong, Tsukada: presheaves over plays.
Models of nondeterministic, concurrent languages.

On causal models for weak memory models:
» Jeffrey & Riley, Brookes et. al., Pichon et. al.

Towards a causal and compositional operational semantics of programming languages - Simon Castellan

Extensions / Other work

Axis of development:

1. Understanding the structure of strategies.
Which strategies are expressible using which effects?
— Fully abstract models of extensions of PCF. (With
Clairambault, and Winskel)

2. Adding quantitive information.

» probabilities (full abstraction for probabilistic PCF) (With
Clairambault, Paquet and Winskel)

» quantum (WIP by Clairambault, De Visme, Winskel)

3. Modelling complex languages. Work in progress:

» Complex memory models (with Alglave and Madiot),

» Session m-calculus (with Clairambault and Yoshida).

Towards a causal and compositional operational semantics of programming languages - Simon Castellan 37 /37

