Towards a causal and compositional operational semantics of programming languages

Simon Castellan ${ }^{1}$
${ }^{1}$ Imperial College London, UK

November 21th, 2016
LSV Seminar

Message-passing on my computer

Consider this program mp:

$$
\begin{aligned}
& \text { data }=\mathrm{flag}=0 \\
& \text { data }:=17 ; \| r \leftarrow \mathrm{flag} ; \\
& \text { flag }:=1 \quad \| \operatorname{if}(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Message-passing on my computer

Consider this program mp:

$$
\begin{aligned}
& \text { data }=\mathrm{flag}=0 \\
& \text { data }:=17 ; \| r \leftarrow \mathrm{flag} ; \\
& \text { flag }:=1 \quad \| \operatorname{if}(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Possible execution traces on my computer:

Message-passing on my computer

Consider this program mp:

$$
\begin{aligned}
& \text { data }=\mathrm{flag}=0 \\
& \text { data }:=17 ; \| r \leftarrow \text { flag; } \\
& \text { flag }:=1 \quad \| \operatorname{if}(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Possible execution traces on my computer:

- Wdata:=17

Message-passing on my computer

Consider this program mp:

$$
\begin{aligned}
& \text { data }=\mathrm{flag}=0 \\
& \text { data }:=17 ;\left\|\begin{array}{r}
r \leftarrow \mathrm{flag} ; \\
\text { flag }:=1
\end{array}\right\| \operatorname{if}(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Possible execution traces on my computer:

- $W_{\text {data }:=17} \cdot W_{f l a g:}=1$

Message-passing on my computer

Consider this program mp:

$$
\begin{aligned}
& \text { data }=\mathrm{flag}=0 \\
& \text { data }:=17 ; \| r \leftarrow \mathrm{flag} ; \\
& \text { flag }:=1 \quad \| \operatorname{if}(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Possible execution traces on my computer:

- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{~W}_{\text {flag }}=1 \cdot R_{\text {flag }}=1$

Message-passing on my computer

Consider this program mp:

$$
\left.\begin{aligned}
& \text { data }=\text { flag }=0 \\
& \text { data }:=17 ;| | r \leftarrow f l a g ; \\
& \text { flag }:=1
\end{aligned} \right\rvert\, \begin{aligned}
& \text { if }(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Possible execution traces on my computer:

- $\mathrm{W}_{\text {data }}:=17 \cdot \mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17$

Message-passing on my computer

Consider this program mp:

$$
\begin{aligned}
& \text { data }=\mathrm{flag}=0 \\
& \text { data }:=17 ; \| r \leftarrow \mathrm{flag} ; \\
& \text { flag }:=1 \quad \| \operatorname{if}(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Possible execution traces on my computer:

- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{~W}_{\text {flag: }}=1 \cdot \mathrm{R}_{\text {flag }}=1 \cdot \mathrm{R}_{\text {data }}=17$
- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{~W}_{\mathrm{flag}}:=1$

Message-passing on my phone

$$
\begin{aligned}
& \text { data }=f l a g=0 \\
& \text { data }:=17 ;| | r \leftarrow f l a g ; \\
& \text { flag }:=1 \quad \text { if }(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Possible execution traces on my phone:

- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{~W}_{\text {flag: }}=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17$
- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:=17} \cdot \mathrm{~W}_{\mathrm{flag}}:=1$

Message-passing on my phone

$$
\left.\begin{gathered}
\text { data }=\mathrm{flag}=0 \\
\text { data }:=17 ; \| r \leftarrow \mathrm{flag} ; \\
\text { flag }:=1
\end{gathered} \right\rvert\, \begin{aligned}
& \text { if }(r==1)\{v \leftarrow \text { data }\}
\end{aligned}
$$

Possible execution traces on my phone:

- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{~W}_{\text {flag: }}=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17$
- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:=17} \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- Welag:=1

Message-passing on my phone

\[

\]

Possible execution traces on my phone:

- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{~W}_{\text {flag: }}=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17$
- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:=17} \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{W}_{\mathrm{flag}}:=1 \cdot R_{\mathrm{flag}}=1$

Message-passing on my phone

$$
\begin{gathered}
\text { data }=\text { flag }=0 \\
\text { data }:=17 ; \| r \leftarrow \text { flag; } \\
\text { flag }:=1 \quad \| f(r==1)\{v \leftarrow \text { data }\}
\end{gathered}
$$

Possible execution traces on my phone:

- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{~W}_{\text {flag: }}=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17$
- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:=17} \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=0$

Message-passing on my phone

$$
\begin{gathered}
\text { data }=\text { flag }=0 \\
\text { data }:=17 ;\left\|\begin{array}{l}
r \leftarrow \text { flag; } \\
\text { flag }:=1
\end{array}\right\| \text { if }(r==1)\{v \leftarrow \text { data }\}
\end{gathered}
$$

Possible execution traces on my phone:

- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17$
- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot W_{\mathrm{flag}}:=1$
- $\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:=17} \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{W}_{\text {flag: }}=1 \cdot \mathrm{R}_{\text {flag }}=1 \cdot \mathrm{R}_{\text {data }}=0 \cdot W_{\text {data }}=17$

Message-passing on my phone

$$
\begin{gathered}
\text { data }=\text { flag }=0 \\
\text { data }:=17 ;\left\|\begin{array}{rl}
r \leftarrow \text { flag; } \\
\text { flag }:=1
\end{array}\right\| \operatorname{if}(r==1)\{v \leftarrow \text { data }\}
\end{gathered}
$$

Possible execution traces on my phone:

- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{~W}_{\text {flag }}=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17$
- $\mathrm{W}_{\text {data }:=17} \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1$
- $\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }}:=17 \cdot W_{\mathrm{flag}}:=1$
- $\mathrm{W}_{\text {flag: }}=1 \cdot \mathrm{R}_{\text {flag }}=1 \cdot \mathrm{R}_{\text {data }}=0 \cdot \mathrm{~W}_{\text {data }:=17}$
- $\mathrm{W}_{\mathrm{flag}:}=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{~W}_{\text {data }}:=17 \cdot R_{\text {data }}=17$
- $\mathrm{W}_{\text {flag }:=1} \cdot W_{\text {data }:=17} \cdot R_{\text {flag }}=1 \cdot R_{\text {data }}=17$
- $R_{f l a g}=0 \cdot W_{f l a g}:=1 \cdot W_{\text {data }}:=17$

A different architecture, much harder to reason about. . .

Structure behind traces

$$
\left\{\begin{array}{l}
\mathrm{W}_{\mathrm{flag}}:=1 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17
\end{array}\right.
$$

$$
\left\{\mathrm{W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=0 \cdot \mathrm{~W}_{\text {data }}:=17\right.
$$

$$
\left\{\begin{array}{l}
\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \\
\mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \\
\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{~W}_{\text {data }}:=17
\end{array}\right.
$$

Structure behind traces

$$
\left\{\begin{array}{l}
\mathrm{W}_{\mathrm{flag}}:=1 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17
\end{array}\right.
$$

$$
\begin{array}{cc}
\mathrm{W}_{\text {flag }}:=1 & \mathrm{~W}_{\text {data }}:=17 \\
\nabla & \nabla \\
\mathrm{R}_{\text {flag }}=1 & \rightarrow \mathrm{R}_{\text {data }}=17
\end{array}
$$

$$
\left\{\mathrm{W}_{\mathrm{flag}:=1} \cdot \mathrm{R}_{\mathrm{flag}=1} \cdot \mathrm{R}_{\text {data }=0} \cdot \mathrm{~W}_{\text {data }}:=17\right.
$$

$$
\left\{\begin{array}{l}
\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \\
\mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \\
\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{~W}_{\text {data }}:=17
\end{array}\right.
$$

Structure behind traces

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{W}_{\text {flag }}:=1 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17
\end{array}\right. \\
& \begin{array}{cc}
\mathrm{W}_{\text {flag: }}=1 & \mathrm{~W}_{\text {data }}:=17 \\
\nabla & \nabla
\end{array} \\
& R_{\text {flag }}=1 \rightarrow R_{\text {data }}=17 \\
& \left\{\mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=0 \cdot \mathrm{~W}_{\text {data }}:=17\right. \\
& \left\{\begin{array}{l}
R_{f l a g}=0 \cdot W_{\text {data }:}=17 \cdot W_{\text {flag }}:=1 \\
W_{\text {data }}:=17 \cdot R_{\text {flag }}=0 \cdot W_{\text {flag }}:=1 \\
R_{\text {flag }}=0 \cdot W_{\text {flag }}:=1 \cdot W_{\text {data }}=17
\end{array}\right. \\
& \begin{array}{cc}
\mathrm{W}_{\text {flag }}:=1 & \mathrm{R}_{\text {data }}=0 \\
\dot{\nabla} & \nabla \quad \nabla \\
\mathrm{R}_{\text {flag }=1} & \mathrm{~W}_{\text {data }:}=17
\end{array}
\end{aligned}
$$

Structure behind traces

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{W}_{\text {flag }}:=1 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17
\end{array}\right. \\
& \begin{array}{cc}
\mathrm{W}_{\text {flag: }}=1 & \mathrm{~W}_{\text {data }}:=17 \\
\nabla & \nabla
\end{array} \\
& R_{\text {flag }}=1 \rightarrow R_{\text {data }}=17 \\
& \left\{\mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=0 \cdot \mathrm{~W}_{\text {data }}:=17\right. \\
& \left\{\begin{array}{l}
\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{~W}_{\text {flag }}:=1 \\
\mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {flag }}:=1 \\
\mathrm{R}_{\text {flag }}=0 \cdot \mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{~W}_{\text {data }:}=17
\end{array}\right. \\
& \begin{array}{cc}
\mathrm{W}_{\text {flag }}:=1 & \begin{array}{c}
\mathrm{R}_{\text {data }}=0 \\
\nabla
\end{array} \\
\begin{array}{l}
\nabla \\
\mathrm{R}_{\text {flag }}=1
\end{array} & \mathrm{~W}_{\text {data }:}=17
\end{array} \\
& R_{\text {flag }}=0 \quad W_{\text {data }}=17 \\
& \text { 方 } \\
& \mathrm{W}_{\mathrm{flag}}:=1
\end{aligned}
$$

Structure behind traces

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{W}_{\text {flag }}:=1 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{R}_{\text {data }}=17 \\
\mathrm{~W}_{\text {data }}:=17 \cdot \mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=17
\end{array}\right. \\
& \begin{array}{cc}
\mathrm{W}_{\text {flag: }}=1 & \mathrm{~W}_{\text {data }}:=17 \\
\nabla & \nabla
\end{array} \\
& R_{\text {flag }}=1 \rightarrow R_{\text {data }}=17 \\
& \left\{\mathrm{~W}_{\mathrm{flag}}:=1 \cdot \mathrm{R}_{\mathrm{flag}}=1 \cdot \mathrm{R}_{\text {data }}=0 \cdot \mathrm{~W}_{\text {data }}:=17\right. \\
& \left\{\begin{array}{l}
\mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{~W}_{\text {flag }}:=1 \\
\mathrm{~W}_{\text {data }:}=17 \cdot \mathrm{R}_{\mathrm{flag}}=0 \cdot \mathrm{~W}_{\text {flag }}:=1 \\
\mathrm{R}_{\text {flag }}=0 \cdot \mathrm{~W}_{\text {flag }}:=1 \cdot \mathrm{~W}_{\text {data }:}=17
\end{array}\right. \\
& \begin{array}{l}
\mathrm{R}_{\text {flag }}=0 \quad \mathrm{~W}_{\text {data }:}=17 \\
\vec{\nu} \\
\mathrm{~W}_{\text {flag }}:=1
\end{array}
\end{aligned}
$$

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

This set of partial orders can be summed by an event structure:

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

This set of partial orders can be summed by an event structure:

This talk

1. Modelling a first-order programming language. With relaxed shared memory.
2. When actions become contextual.

An introduction to game semantics for higher-order languages.
3. Interpretating a higher-order language, adequately. With concurrency \& non-determinism.

I. Modelling a first-order programming language

An ARM-like semantics for a toy language

An assembly language with relaxed semantics

Syntax. Idents split in thread-local registers and global variables.

$$
\begin{aligned}
& e::=r|e+e| \ldots \\
& t::=\text { fence; } t|\mathrm{x}:=e ; t| r \leftarrow \mathrm{x} ; t \\
& p::=t\|\ldots\| t
\end{aligned}
$$

Actions. We observe the following actions from the programs:

$$
\Sigma::=W_{\mathrm{x}:=k}\left|R_{\mathrm{x}=k}\right| \text { fence. }
$$

Semantics. Described by a labeled transition system on states p, μ :

$$
\langle p @ \mu\rangle \xrightarrow{\ell \in \Sigma}\left\langle p^{\prime} @ \mu^{\prime}\right\rangle . \quad\left(\mu, \mu^{\prime}: \operatorname{Var} \rightarrow \mathbb{N}\right)
$$

It is relaxed: operations on independent variables can be reordered.

A few rules

Thread rules: $\langle t @ \mu\rangle \xrightarrow{\ell}\left\langle t^{\prime} @ \mu^{\prime}\right\rangle$:

$$
\langle\mathrm{x}:=k ; t @ \mu\rangle \xrightarrow{\mathrm{w}_{\mathrm{x}:=k}}\langle\nmid \Theta \mu[\mathrm{x}:=k]\rangle
$$

A few rules

Thread rules: $\langle t @ \mu\rangle \xrightarrow{\ell}\left\langle t^{\prime} @ \mu^{\prime}\right\rangle$:

$$
\langle\mathrm{x}:=k ; t @ \mu\rangle \xrightarrow{\mathrm{w}_{\mathrm{x}=k}}\langle t @ \mu[\mathrm{x}:=k]\rangle
$$

\langle fence; $t @ \mu\rangle \xrightarrow{\text { fence }}\langle t @ \mu\rangle$

A few rules

Thread rules: $\langle t @ \mu\rangle \xrightarrow{\ell}\left\langle t^{\prime} @ \mu^{\prime}\right\rangle$:

$$
\begin{aligned}
& \langle\mathrm{x}:=k ; t 巴 \mu\rangle \xrightarrow{\mathrm{w}_{\mathrm{x}=k}}\langle t @ \mu[\mathrm{x}:=k]\rangle \quad\langle\text { fence } ; t @ \mu\rangle \xrightarrow{\text { fence }}\langle t @ \mu\rangle \\
& \langle t \odot \mu\rangle \xrightarrow{\ell}\left\langle t^{\prime} @ \mu^{\prime}\right\rangle \quad \ell \neq \text { fence } \quad \operatorname{var}(\ell) \neq \mathrm{x} \\
& \langle\mathrm{x}:=k ; t @ \mu\rangle \xrightarrow{\ell}\left\langle\mathrm{x}:=k ; t^{\prime} @ \mu^{\prime}\right\rangle
\end{aligned}
$$

A few rules

Thread rules: $\langle t @ \mu\rangle \xrightarrow{\ell}\left\langle t^{\prime} @ \mu^{\prime}\right\rangle$:

$$
\begin{aligned}
& \langle\mathrm{x}:=k ; t \varrho \mu\rangle \xrightarrow{\mathrm{W}_{\mathrm{x}}=k}\langle t @ \mu[\mathrm{x}:=k]\rangle \quad\langle\text { fence; } t @ \mu\rangle \xrightarrow{\text { fence }}\langle t @ \mu\rangle \\
& \langle t \odot \mu\rangle \xrightarrow{\ell}\left\langle t^{\prime} @ \mu^{\prime}\right\rangle \quad \ell \neq \text { fence } \quad \operatorname{var}(\ell) \neq \mathrm{x} \\
& \langle\mathrm{x}:=k ; t @ \mu\rangle \xrightarrow{\ell}\left\langle\mathrm{x}:=k ; t^{\prime} @ \mu^{\prime}\right\rangle
\end{aligned}
$$

And then:

$$
\frac{\left\langle t_{i} @ \mu\right\rangle \xrightarrow{\ell}\left\langle t_{i}^{\prime} @ \mu^{\prime}\right\rangle}{\left\langle t_{1}\|\ldots\| t_{i}\|\ldots\| t_{n} @ \mu\right\rangle \xrightarrow{\ell}\left\langle t_{1}\|\ldots\| t_{i}^{\prime}\|\ldots\| t_{n} @ \mu^{\prime}\right\rangle}
$$

A few rules

Thread rules: $\langle t @ \mu\rangle \xrightarrow{\ell}\left\langle t^{\prime} @ \mu^{\prime}\right\rangle$:

And then:

$$
\left\langle t_{i} @ \mu\right\rangle \xrightarrow{\ell}\left\langle t_{i}^{\prime} @ \mu^{\prime}\right\rangle
$$

$$
\left\langle t_{1}\|\ldots\| t_{i}\|\ldots\| t_{n} @ \mu\right\rangle \xrightarrow{\ell}\left\langle t_{1}\|\ldots\| t_{i}^{\prime}\|\ldots\| t_{n} @ \mu^{\prime}\right\rangle
$$

This generates the operational (partial) traces:

$$
\operatorname{Tr}(p, \mu)=\left\{\ell_{1} \ldots \ell_{n} \mid\langle p @ \mu\rangle \xrightarrow{\ell_{1}} \ldots \xrightarrow{\ell_{n}}\left\langle p^{\prime} @ \mu^{\prime}\right\rangle\right\} .
$$

$$
\begin{aligned}
& \langle\mathrm{x}:=k ; t 巴 \mu\rangle \xrightarrow{\mathrm{W}_{\mathrm{x}=k}}\langle t @ \mu[\mathrm{x}:=k]\rangle \quad\langle\text { fence; } t @ \mu\rangle \xrightarrow{\text { fence }}\langle t @ \mu\rangle \\
& \stackrel{\langle t @ \mu\rangle}{ } \xrightarrow{\ell}\left\langle t^{\prime} @ \mu^{\prime}\right\rangle \quad \ell \neq \text { fence } \quad \operatorname{var}(\ell) \neq \mathrm{x} \\
& \langle\mathrm{x}:=k ; t \oplus \mu\rangle \xrightarrow{\ell}\left\langle\mathrm{x}:=k ; t^{\prime} \oplus \mu^{\prime}\right\rangle
\end{aligned}
$$

Labeled event structures

Definition

A (Σ-labeled) event structure is a tuple $\left(E, \leq_{E}, \sharp_{E}, \ell: E \rightarrow \Sigma\right)$ where $\left(E, \leq_{E}\right)$ is a partial order and $\forall E$ is a symmetric relation on E, satisfying finite causes and conflict inheritance.

Labeled event structures

Definition

A (Σ-labeled) event structure is a tuple $\left(E, \leq_{E}, \sharp_{E}, \ell: E \rightarrow \Sigma\right)$ where $\left(E, \leq_{E}\right)$ is a partial order and \sharp_{E} is a symmetric relation on E, satisfying finite causes and conflict inheritance.

- Configurations are downclosed, conflict-free subsets of E. $\mathscr{C}(E)$ is the set of configurations of E.

Labeled event structures

Definition

A (Σ-labeled) event structure is a tuple $\left(E, \leq_{E}, \sharp_{E}, \ell: E \rightarrow \Sigma\right)$ where $\left(E, \leq_{E}\right)$ is a partial order and \sharp_{E} is a symmetric relation on E, satisfying finite causes and conflict inheritance.

- Configurations are downclosed, conflict-free subsets of E. $\mathscr{C}(E)$ is the set of configurations of E.
- A trace of E is a linearisation of a configuration of E. $\operatorname{Tr}(E)$ is the set of traces of E (can be seen as a subset of Σ^{*}).

Our goal: a mapping $\llbracket \rrbracket$ from states to event structures s.t.:

$$
\operatorname{Tr}(p, \mu)=\operatorname{Tr} \llbracket p, \mu \rrbracket .
$$

An overview of the semantics

1. Thread semantics: context is left open (and unknown)
$W_{\text {flag: }}=1 \quad W_{\text {data }}:=17$

$$
\mathrm{R}_{\text {data }}=0 \sim \mathrm{R}_{\text {data }}=1 \sim \wedge
$$

nomern
2. Final semantics: context is assumed empty

Compute interactions with memory:

Thread semantics

Thread semantics

Fences. \llbracket fence; $t \rrbracket=$ fence $\cdot \llbracket t \rrbracket$

$$
\begin{gathered}
\text { fence } \\
\quad \begin{array}{c}
\text { n }
\end{array} \\
\llbracket t \rrbracket
\end{gathered}
$$

$\left(\leq_{\ell \cdot E}=\leq_{E} \cup\left\{\left(\ell, \ell^{\prime}\right)\right\}\right)$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{x}}:=\mathrm{k} \\
& \measuredangle t \rrbracket \Delta
\end{aligned}
$$

Writes. $\llbracket \mathrm{x}:=k ; t \rrbracket=W_{\mathrm{x}}:=k ; \llbracket t \rrbracket$
$\left(\leq_{\ell ; E}=\leq_{E} \cup\left\{(\ell\right.\right.$, fence $\left.\left.),\left(\ell, \ell^{\prime}\right) \mid \operatorname{var}(\ell)=\operatorname{var}\left(\ell^{\prime}\right)\right\}\right)$.

Thread semantics

Fences. \llbracket fence; $t \rrbracket=$ fence $\cdot \llbracket t \rrbracket$

$$
\begin{gathered}
\text { fence } \\
\quad \begin{array}{c}
\text { n }
\end{array} \\
\llbracket t \rrbracket
\end{gathered}
$$

$\left(\leq_{\ell \cdot E}=\leq_{E} \cup\left\{\left(\ell, \ell^{\prime}\right)\right\}\right)$

$$
\mathrm{W}_{\mathrm{x}}:=k
$$

Writes. $\llbracket \mathrm{x}:=k ; t \rrbracket=\mathrm{W}_{\mathrm{x}}:=k ; \llbracket t \rrbracket$
$\left(\leq_{\ell ; E}=\leq_{E} \cup\left\{(\ell\right.\right.$, fence $\left.\left.),\left(\ell, \ell^{\prime}\right) \mid \operatorname{var}(\ell)=\operatorname{var}\left(\ell^{\prime}\right)\right\}\right)$.
Reads. $\llbracket r \leftarrow \mathrm{x} ; t \rrbracket=\sum_{n \in \mathbb{N}} \mathrm{R}_{\mathrm{x}=n} ; \llbracket t[n / r] \rrbracket$

$$
(\begin{array}{cc}
\mathrm{R}_{\mathrm{x}}=0 \\
\lfloor t[0 / r] \rrbracket \square
\end{array} \overbrace{\llbracket t[1 / r] \rrbracket}^{\mathrm{R}_{\mathrm{x}}=1}
$$

Thread semantics

Fences. \llbracket fence; $t \rrbracket=$ fence $\cdot \llbracket t \rrbracket$

$$
\begin{gathered}
\text { fence } \\
\quad \begin{array}{c}
\text { n }
\end{array} \\
\llbracket t \rrbracket
\end{gathered}
$$

$\left(\leq_{\ell \cdot E}=\leq_{E} \cup\left\{\left(\ell, \ell^{\prime}\right)\right\}\right)$

$$
\mathrm{W}_{\mathrm{x}}:=k
$$

Writes. $\llbracket \mathrm{x}:=k ; t \rrbracket=\mathrm{W}_{\mathrm{x}}:=k ; \llbracket t \rrbracket$
$\left(\leq_{\ell ; E}=\leq_{E} \cup\left\{(\ell\right.\right.$, fence $\left.\left.),\left(\ell, \ell^{\prime}\right) \mid \operatorname{var}(\ell)=\operatorname{var}\left(\ell^{\prime}\right)\right\}\right)$.
Reads. $\llbracket r \leftarrow x ; t \rrbracket=\sum_{n \in \mathbb{N}} \mathrm{R}_{\mathrm{x}=n} ; \llbracket t[n / r] \rrbracket$

$$
\begin{array}{cc}
\mathrm{R}_{\mathrm{x}}=0 & \mathrm{R}_{\mathrm{x}=1} \\
\ddots \llbracket t[0 / r] \rrbracket & \ddots \llbracket t[1 / r] \rrbracket
\end{array}
$$

Program. No interaction: $\llbracket t_{1}\|\ldots\| t_{n} \rrbracket=\llbracket t_{1} \rrbracket \| \ldots \llbracket t_{n} \rrbracket$.

Wiring memory behaviour

The memory behaviour is specified through consistent traces:

$$
C_{\mu}::=\mathrm{W}_{\mathrm{x}:=k} \cdot C_{\mu[\mathrm{x}:=k]} \mid \text { fence } \cdot C_{\mu} \mid \mathrm{R}_{\mathrm{x}=\mu(\mathrm{x})} \cdot C_{\mu}
$$

Theorem
For a machine state $(p, \mu), \operatorname{Tr}(p, \mu)=\operatorname{Tr} \llbracket p \rrbracket \cap C_{\mu}$.

Wiring memory behaviour

The memory behaviour is specified through consistent traces:

$$
C_{\mu}::=\mathrm{W}_{\mathrm{x}:=k} \cdot C_{\mu[\mathrm{x}:=k]} \mid \text { fence } \cdot C_{\mu} \mid \mathrm{R}_{\mathrm{x}=\mu(\mathrm{x})} \cdot C_{\mu}
$$

Theorem
For a machine state $(p, \mu), \operatorname{Tr}(p, \mu)=\operatorname{Tr} \llbracket p \rrbracket \cap C_{\mu}$.
But I promised an e.s. $\llbracket p, \mu \rrbracket!$ (causally account for memory)

Wiring memory behaviour

The memory behaviour is specified through consistent traces:

$$
C_{\mu}::=\mathrm{W}_{\mathrm{x}:=k} \cdot C_{\mu[\mathrm{x}:=k]} \mid \text { fence } \cdot C_{\mu} \mid \mathrm{R}_{\mathrm{x}=\mu(\mathrm{x})} \cdot C_{\mu}
$$

Theorem
For a machine state $(p, \mu), \operatorname{Tr}(p, \mu)=\operatorname{Tr} \llbracket p \rrbracket \cap C_{\mu}$.
But I promised an e.s. $\llbracket p, \mu \rrbracket!$ (causally account for memory)
The causal account of memory can be defined as:

$$
\mathscr{C}_{\mu}=\left\{\mathbf{q} \mid \operatorname{Tr}(\mathbf{q}) \in C_{\mu}\right\} \in \operatorname{Set}(\mathbf{P O})
$$

How to combine $\llbracket p \rrbracket$ and \mathscr{C}_{μ} ?

Briding a gap: event-based and execution-based models

ES

$\llbracket p \rrbracket$

Briding a gap: event-based and execution-based models

ES

$\operatorname{Set}(\mathbf{P O})$
$\llbracket p \rrbracket$
\mathscr{C}_{μ}

Briding a gap: event-based and execution-based models

$$
\mathscr{C}(\cdot)
$$

$\mathrm{ES} \longrightarrow \operatorname{Set}(\mathbf{P O})$

Briding a gap: event-based and execution-based models

$\mathscr{C}(\cdot)$

$$
\operatorname{Pr}(\cdot)
$$

Briding a gap: event-based and execution-based models

$\mathscr{C}(\cdot)$

$\operatorname{Pr}(\cdot)$

Briding a gap: event-based and execution-based models

A partial product on partial orders

Given two partial orders $\leq_{\mathbf{q}}, \leq_{\mathbf{q}^{\prime}}$ on the same carrier set, write:

$$
\mathbf{q} \wedge \mathbf{q}^{\prime}= \begin{cases}\left(\mathbf{q} \cup \mathbf{q}^{\prime}\right)^{*} & \text { if a partial order } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

A partial product on partial orders

Given two partial orders $\leq_{\mathbf{q}}, \leq_{\mathbf{q}^{\prime}}$ on the same carrier set, write:

$$
\mathbf{q} \wedge \mathbf{q}^{\prime}= \begin{cases}\left(\mathbf{q} \cup \mathbf{q}^{\prime}\right)^{*} & \text { if a partial order } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

A partial product on partial orders

Given two partial orders $\leq_{\mathbf{q}}, \leq_{\mathbf{q}^{\prime}}$ on the same carrier set, write:

$$
\mathbf{q} \wedge \mathbf{q}^{\prime}= \begin{cases}\left(\mathbf{q} \cup \mathbf{q}^{\prime}\right)^{*} & \text { if a partial order } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

generating a product on event structures

For $P, Q \in \operatorname{Sets}(\mathbf{P O})$, let:

$$
P \star Q=\{p \wedge q \mid p \in P, q \in Q\} .
$$

generating a product on event structures

For $P, Q \in \operatorname{Sets}(\mathbf{P O})$, let:

$$
P \star Q=\{p \wedge q \mid p \in P, q \in Q\} .
$$

For $E, E^{\prime} \in \mathbf{E S}$, let:

$$
E \star E^{\prime}=\operatorname{Pr}\left(\mathscr{C}(E) \star \mathscr{C}\left(E^{\prime}\right)\right)
$$

generating a product on event structures

For $P, Q \in \operatorname{Sets}(\mathbf{P O})$, let:

$$
P \star Q=\{p \wedge q \mid p \in P, q \in Q\} .
$$

For $E, E^{\prime} \in \mathbf{E S}$, let:

$$
E \star E^{\prime}=\operatorname{Pr}\left(\mathscr{C}(E) \star \mathscr{C}\left(E^{\prime}\right)\right)
$$

Theorem
Both operations are categorical products.

Note:

$$
\operatorname{Tr}\left(E \star E^{\prime}\right)=\operatorname{Tr}(E) \cap \operatorname{Tr}\left(E^{\prime}\right)
$$

A final model

Define $\llbracket p, \mu \rrbracket=\operatorname{Pr}\left(\mathscr{C}(\llbracket p \rrbracket) \star \mathscr{C}_{\mu}\right)$. We have:

$$
\operatorname{Tr} \llbracket p, \mu \rrbracket=\operatorname{Tr} \llbracket p \rrbracket \cap \operatorname{Tr} \llbracket \mathscr{C}_{\mu} \rrbracket=\operatorname{Tr} \llbracket p \rrbracket \cap C_{\mu}=\operatorname{Tr}(p, \mu) .
$$

Yields the desired result:

Wrapping up

- This architecture is a (huge) simplification of ARM v8.0. We can also model SC, TSO, ...

Wrapping up

- This architecture is a (huge) simplification of ARM v8.0. We can also model SC, TSO, ...
- By changing \mathscr{C}_{μ} we get more or less compact event structures that can be useful for verification.
(Implementation in Herd in progress)

Wrapping up

- This architecture is a (huge) simplification of ARM v8.0. We can also model SC, TSO, ...
- By changing \mathscr{C}_{μ} we get more or less compact event structures that can be useful for verification. (Implementation in Herd in progress)
- The treatment of reorderings should make the model useful to prove properties of architectures (eg. Data-Race-Freedom theorems.)

II. What about non-first order languages?

5 mins of game semantics a day keeps the syntax away

Nontrivial scopes

Imagine now our threads look like:

```
alloc \((x)\);
alloc \((y)\);
\(r \leftarrow x ;\)
\(\operatorname{if}(r=1)\{y:=1\}\)
dealloc(x); dealloc(y)
```


Nontrivial scopes

Imagine now our threads look like:

$$
\begin{aligned}
& \operatorname{alloc}(x) ; \\
& \text { alloc }(y) ; \\
& r \leftarrow x ; \\
& \text { if }(r=1)\{y:=1\} \\
& \text { dealloc }(x) ; \text { dealloc }(y)
\end{aligned}
$$

Labels should now be:

$$
\Sigma::=\cdots\left|a_{x}\right| d_{x}
$$

Nontrivial scopes

Imagine now our threads look like:

$$
\begin{aligned}
& \operatorname{alloc}(x) ; \\
& \operatorname{alloc}(y) ; \\
& r \leftarrow \mathrm{x} ; \\
& \text { if }(r=1)\{\mathrm{y}:=1\} \\
& \text { dealloc }(\mathrm{x}) ; \text { dealloc }(\mathrm{y})
\end{aligned}
$$

Labels should now be:

$$
\Sigma::=\cdots\left|a_{x}\right| d_{x}
$$

Nontrivial scopes

Imagine now our threads look like:

$$
\begin{aligned}
& \operatorname{alloc}(x) ; \\
& \operatorname{alloc}(y) ; \\
& r \leftarrow \mathrm{x} ; \\
& \text { if }(r=1)\{\mathrm{y}:=1\} \\
& \text { dealloc }(\mathrm{x}) ; \text { dealloc }(\mathrm{y})
\end{aligned}
$$

Labels should now be:

$$
\Sigma::=\cdots\left|\mathrm{a}_{\mathrm{x}}\right| \mathrm{d}_{\mathrm{x}}
$$

Implicit allocation rules give Σ some structure:

Protocols as types

Interaction thread/memory is an interaction client/server:
thread

> memory

Protocols as types

Interaction thread/memory is an interaction client/server:

Protocols as types

Interaction thread/memory is an interaction client/server:

Protocols as types

Interaction thread/memory is an interaction client/server:

Protocols as types

Interaction thread/memory is an interaction client/server:

Protocols as types

Interaction thread/memory is an interaction client/server:

Protocols as types

Interaction thread/memory is an interaction client/server:

Protocols as types

Interaction thread/memory is an interaction client/server:

Protocols as types

Interaction thread/memory is an interaction client/server:
thread

The protocol is described by the following partial order:

Protocols as types

Interaction thread/memory is an interaction client/server:
thread

```
memory
```

The protocol is described by the following partial order:

Such a partial order with polarity annotations is a game.

Protocols as types

Interaction thread/memory is an interaction client/server:
thread

```
memory
```

The protocol is described by the following partial order:

Such a partial order with polarity annotations is a game. What is an event structure labelled by a game?

Agent (or pre-strategy)

A agent on a A is an e.s. S and a labelling $\sigma: S \rightarrow A$ s.t.:

1. (Respects the rules) σ maps configurations of S to down-closed subsets of A
2. (Linearity) σ is injective on configurations.

Agent (or pre-strategy)

A agent on a A is an e.s. S and a labelling $\sigma: S \rightarrow A$ s.t.:

1. (Respects the rules) σ maps configurations of S to down-closed subsets of A
2. (Linearity) σ is injective on configurations.

No explicit names: each event is below a unique a, in the game

Agents and π-calculus

Agents and π-calculus

Consider $A=$

Agents can be described by terms of the pi-calculus:

$$
a: A \vdash a(x, r t t, r f f) .
$$

Agents and π-calculus

Consider $A=$

Agents can be described by terms of the pi-calculus:

$$
a: A \vdash a(x, r t t, r f f) \cdot \bar{x}(t t, f f) .
$$

Agents and π-calculus

Consider $A=$

Agents can be described by terms of the pi-calculus:

$$
a: A \vdash a(x, r t t, r f f) . \bar{x}(t t, f f) . t t() .
$$

Agents and π-calculus

Consider $A=$

Agents can be described by terms of the pi-calculus:

$$
a: A \vdash a(x, r t t, r f f) \cdot \bar{x}(t t, f f) \cdot t t() \cdot \overline{r f f}
$$

Agents and π-calculus

Consider $A=$

Agents can be described by terms of the pi-calculus:

$$
a: A \vdash a(x, r t t, r f f) \cdot \bar{x}(t t, f f) \cdot(t t() . \overline{r f f} \| f f() \cdot \overline{r t t}) .
$$

Copycat, or the asynchronous forwarder

Given a game A, we write A^{\perp} for its dual. (polarity reversed)

(corresponding to the term:

$$
a: B^{\perp}, b: B \vdash b(r t t, r f f) . \bar{a}(t t, f f) \cdot(t t() . \overline{r t t} \| t t() . \overline{r t t}) .
$$

Restriction and composition

An agent on $A^{\perp} \| B$ can be viewed as an agent from A to B :

$$
\sigma: S \rightarrow A^{\perp} \| B \quad \Leftrightarrow \quad \iota: A^{\perp}, o: B \vdash P .
$$

Restriction and composition

An agent on $A^{\perp} \| B$ can be viewed as an agent from A to B :

$$
\sigma: S \rightarrow A^{\perp} \| B \quad \Leftrightarrow \quad \iota: A^{\perp}, o: B \vdash P .
$$

Such agents can be composed:

$$
\sigma: S \rightarrow A^{\perp}\left\|B \quad \tau: T \rightarrow B^{\perp}\right\| C \Longrightarrow \tau \odot \sigma: T \odot S \rightarrow A^{\perp} \| C
$$

Restriction and composition

An agent on $A^{\perp} \| B$ can be viewed as an agent from A to B :

$$
\sigma: S \rightarrow A^{\perp} \| B \quad \Leftrightarrow \quad \iota: A^{\perp}, o: B \vdash P .
$$

Such agents can be composed:

$$
\begin{aligned}
\sigma: S \rightarrow A^{\perp}\left\|B \quad \tau: T \rightarrow B^{\perp}\right\| C & \Longrightarrow \tau \odot \sigma: T \odot S \rightarrow A^{\perp} \| C \\
a: A^{\perp}, b: B \vdash P \quad b: B^{\perp}, c: C \vdash Q & \Longrightarrow a: A^{\perp}, c: C \vdash(\nu b)(P \| Q)
\end{aligned}
$$

Restriction and composition

An agent on $A^{\perp} \| B$ can be viewed as an agent from A to B :

$$
\sigma: S \rightarrow A^{\perp} \| B \quad \Leftrightarrow \quad \iota: A^{\perp}, o: B \vdash P .
$$

Such agents can be composed:

$$
\begin{aligned}
\sigma: S \rightarrow A^{\perp}\left\|B \quad \tau: T \rightarrow B^{\perp}\right\| C & \Longrightarrow \tau \odot \sigma: T \odot S \rightarrow A^{\perp} \| C \\
a: A^{\perp}, b: B \vdash P \quad b: B^{\perp}, c: C \vdash Q & \Longrightarrow a: A^{\perp}, c: C \vdash(\nu b)(P \| Q)
\end{aligned}
$$

In two steps:

1. Interaction of the common parts of σ and τ
2. Hiding of the events on B, invisible after composition.

Composition: a bird's eye view

1. Interaction relies on the product of agents, generalizing the product of labelled e.s.
\rightarrow Interaction σ and τ gives

$$
\tau \circledast \sigma: T \circledast S \rightarrow A\|B\| C .
$$

2. Hiding relies on projejection of event structures: events in B become invisible.

$$
\tau \odot \sigma: T \circledast S \downarrow V \rightarrow A\|B\| C \quad V=\tau \circledast \sigma^{-1}(A \| C)
$$

An example

Consider:

$$
\sigma=\underset{\mathrm{tt}}{\swarrow^{\mathrm{q}}}: \emptyset^{\perp}\left\|B \quad \tau=\mathbb{c}_{B}: B^{\perp}\right\| B .
$$

An example

Consider:

The interaction gives:

An example

Consider:

The interaction gives:

An example

Consider:

The interaction gives:

An example

Consider:

$$
\sigma=\underset{\mathrm{tt} \xrightarrow{\Delta^{\mathrm{q}}}: \emptyset^{\perp} \| B \mathrm{ff}}{ } \quad \tau=\mathbb{c}_{B}: B^{\perp} \| B
$$

The interaction gives:

An example

Consider:

The interaction gives:

An example

Consider:

The interaction gives:

An example

Consider:

The interaction gives:

An example

Consider:

$$
\sigma=\underset{\mathrm{tt} \xrightarrow{\Delta^{\mathrm{q}}}: \emptyset^{\perp}\left\|B \mathrm{ff} \quad \tau=\boldsymbol{c}_{B}: B^{\perp}\right\| B}{ }
$$

The interaction gives:
B
σ not invariant under the asynchronous forwarder.

Asynchrous agents, or strategies

Which agents σ satsify $\mathbb{C}_{A} \odot \sigma \cong \sigma$?
Definition
A strategy is an agent $\sigma: S \rightarrow A$ such that

1. S only adds immediate causal links $\Theta \rightarrow \oplus$
2. S is cannot ignore (or duplicate) negative events.

Theorem (Rideau, Winskel)
An agent σ is a strategy if and only if $\mathbb{C}_{A} \odot \sigma \cong \sigma$.
\rightarrow Games and strategies model linear languages (compact-closed category).

III. Interpreting functional programming Languages

Local injectivity and copy indices

To represent nonlinear agents:

Local injectivity and copy indices

To represent nonlinear agents:

The labelling to $B \Rightarrow B$ fails local injectivity.

Local injectivity and copy indices

To represent nonlinear agents:

The labelling to $B \Rightarrow B$ fails local injectivity.
\rightarrow We make the game bigger.

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

But strategies should be uniform. (Uniformity is defined by using event structures with symmetry.)

Uniformity

To compose, Opponent must be allowed to be nonlinear as well:

But strategies should be uniform.
(Uniformity is defined by using event structures with symmetry.)
Theorem (C., Clairambault, Winskel)
The following structure CHO is a model of higher-order computation:

- Types are interpreted by games,
- Terms $\Gamma \vdash M$: A are interpreted by uniform strategies ! $\llbracket\left\ulcorner\rrbracket^{\perp} \| \llbracket A \rrbracket\right)$,
- Composition is: interaction + hiding.

An example of higher-order

Consider the call-by-name program

$$
\text { strict }=\lambda f \text {. new } r \text { in } f(r:=1 ; 1) ;!r=1:(\mathbb{N} \Rightarrow \mathbb{N}) \Rightarrow \mathbb{B} .
$$

An example of higher-order

Consider the call-by-name program

$$
\text { strict }=\lambda f \text {. new } r \text { in } f(r:=1 ; 1) ;!r=1:(\mathbb{N} \Rightarrow \mathbb{N}) \Rightarrow \mathbb{B} .
$$

If f is concurrent with control operators, strict exhibits a race. Theorem
CHO can interpret concurrent languages, adequately for may:

$$
M \Downarrow \Leftrightarrow \llbracket M \rrbracket \text { contains a positive move. }
$$

Hidden divergences

However, in nondetermistic languages convergence is more subtle:

$$
M=\lambda b . \text { (if } b \text { then loop else } \mathrm{tt} \text {). }
$$

Does M choice converge?

Hidden divergences

However, in nondetermistic languages convergence is more subtle:

$$
M=\lambda b . \text { (if } b \text { then loop else } \mathrm{tt} \text {). }
$$

Does M choice converge?

Hidden divergences

However, in nondetermistic languages convergence is more subtle:

$$
M=\lambda b .(\text { if } b \text { then loop else } \mathrm{tt}) .
$$

Does M choice converge?

Hidden divergences

However, in nondetermistic languages convergence is more subtle:

$$
M=\lambda b .(\text { if } b \text { then loop else } \mathrm{tt}) .
$$

Does M choice converge?

As a result: $\llbracket M$ choice $\rrbracket=\llbracket t t \rrbracket$.
Model inadequate for non-angelic convergences!

Essential events

Idea: never hide essential events appearing in a conflict:

$$
\llbracket M \rrbracket \circledast \text { choice : } \quad \mathbb{B}
$$

Essential events

Idea: never hide essential events appearing in a conflict:

$$
\llbracket M \rrbracket \odot \text { choice : }
$$

Strategies become partial maps $S \rightharpoonup A$ (with internal events).
Theorem (C., Clairambault, Hayman, Winskel)
The partial strategies $\tau \circledast \sigma$ and $\tau \odot \sigma$ are weakly bisimilar.
\rightarrow Partial hiding does not lose behaviour up to weak bisimilarity.

The category CHO_{\odot}

Despite not hiding everything, we still get a category:
Theorem (C.)
The following model CHO_{\odot} is a model of higher-order computation:

- Types are interpreted as in CHO,
- Terms are interpreted by strategies with internal events,
- Composition is: interaction + partial hiding.

Moreover CHO_{\odot} interprets nondeterministic languages, adequately for non-angelic convergences (must, fair), ...

In CHO_{\odot}, one can define intensional, causal, compositional semantics for a wide variety of languages.

Related work

Earlier work / inspirations:

- Melliès's asynchronous games.

Traces augmented with 2-dimensional tiles representing independence.

- Curien, Faggian, Piccolo, I-nets. Partial order representation for ludics.

Parallel works:

- Hirschowitz et. al.: preseheaves over graphs. (no hiding) Gives intensional models of π-calculus fully abstract for fair convergence.
- Ong, Tsukada: presheaves over plays. Models of nondeterministic, concurrent languages.

On causal models for weak memory models:

- Jeffrey \& Riley, Brookes et. al., Pichon et. al.

Extensions / Other work

Axis of development:

1. Understanding the structure of strategies. Which strategies are expressible using which effects?
\rightarrow Fully abstract models of extensions of PCF. (With Clairambault, and Winskel)
2. Adding quantitive information.

- probabilities (full abstraction for probabilistic PCF) (With Clairambault, Paquet and Winskel)
- quantum (WIP by Clairambault, De Visme, Winskel)

3. Modelling complex languages. Work in progress:

- Complex memory models (with Alglave and Madiot),
- Session π-calculus (with Clairambault and Yoshida).

