From event structures theory to weak memory
models

Simon Castellan

Imperial College London, UK

January 16th, 2017
QMUL Seminar

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v « data}

From event structures theory to weak memory models - Simon Castellan

2/32

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v « data}

Possible execution traces on my computer:

From event structures theory to weak memory models - Simon Castellan

732

Message-passing on my computer

Consider this program mp:

data = flag =10
r < flag;
if(r == 1){v « data}

data
flag:=1

Possible execution traces on my computer:

> VWdata

From event structures theory to weak memory models - Simon Castellan

732

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag if(r == 1){v < data}

Possible execution traces on my computer:

> Waata:=17 - flag

From event structures theory to weak memory models - Simon Castellan

2/32

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r flag
flag:=1 if(r == 1){v « data}

Possible execution traces on my computer:

> Waata:=17 - wflag::l *fflag

From event structures theory to weak memory models - Simon Castellan

2/32

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag:=1 if(r ==1){v + data}

Possible execution traces on my computer:

> Waata:=17 - wflag::l : R-flag:l - Raata=17

From event structures theory to weak memory models - Simon Castellan

2/32

Message-passing on my computer

Consider this program mp:

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v « data}

Possible execution traces on my computer:
> Waata:=17 - wflag::l : R-flag:l - Raata=17
> Waata:=17 - Rflag:O : wflag::l

> R:Elag:O “Waata:=17 - wflag::l

From event structures theory to weak memory models - Simon Castellan

2/32

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17
> Waata:=17 - Rflag:O : wflag::l

> Rflag:O - Waata:=17 - wflag::l

From event structures theory to weak memory models - Simon Castellan

3/32

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag =1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17

> Waata:=17 - Rflag:O : wflag::l

v

Rflag:O - Waata:=17 - wflag::l

v

wflag::l

From event structures theory to weak memory models - Simon Castellan

3/32

Message-passing on my phone

data = flag =10
data :=17; || r + flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17

> Waata:=17 - Rflag:O : wflag::l

v

Rflag:O - Waata:=17 - wflag::l

v

Welagi=1 * Rflag—1

From event structures theory to weak memory models - Simon Castellan

3/32

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17

> Waata:=17 - Rflag:O : wflag::l

v

Rflag:O - Waata:=17 - wflag::l

v

Welag:=1 - Rf1ag=1 - Raata—0

From event structures theory to weak memory models - Simon Castellan 3/32

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> Waata:=17 ° wflag::l . Rflag:l - Rdata=17

> Waata:=17 - Rflag:O : wflag::l

v

Rflag:O - Waata:=17 - wflag::l

v

wflag::l ' Rflag:l - Raata=0 - Waata:=17

From event structures theory to weak memory models - Simon Castellan

3/32

Message-passing on my phone

data = flag =10
data :=17; || r < flag;
flag:=1 if(r == 1){v < data}

Possible execution traces on my phone:
> wdata::l? : wflag::l . Rflag:l . Rdata:l?
> Waata:=17 - Rflag:O : wflag::l
> Rflag:O - Waata:=17 - wflag::l
> Weiag:=1 * Rf1ag=1 - Raata=0 - Waata:=17
> Weiag:=1 - Re1ag=1 - Waata:=17 - Raata=17
> Weiag:=1 * Waata:=17 - Rf1ag=1 - Raata=17

> Rflag:O : Wflag::l “Waata:=17

A different architecture, much harder to reason about ...

From event structures theory to weak memory models - Simon Castellan

3/32

Structure behind traces

Wflag::l Waata:=17 - R-flag:l - Rdata=17
Wflag::l : Rflag:l “Waata:=17 - Raata=17

Waata:=17 wflag::l : R-flag:l - Raata=17

{ wflag::l : Rflag:l " Raata=0 - Waata:=17

Rflag:O - Waata:=17 - wflag::l
Waata:=17 - Rflag:O ’ wflag::l

Rflag=0 - Welag:=1 - Waata:=17

From event structures theory to weak memory models - Simon Castellan

4/32

Structure behind traces

Welag:=1 - Waata:=17 - Rf1ag=1 - Raata=
flag:=1 data:=17 flag=1 data=17 Wflag::l Waata:—17
Wflag::l : Rflag:l “Waata:=17 - Raata=17 v %

Waata:=17 wflag::l : R-flag:l - Raata=17 Rflagzl —> Raata=17

{ wflag::l : Rflag:l " Raata=0 - Waata:=17

Rflag:O - Waata:=17 - wflag::l
Waata:=17 - Rflag:O ’ wflag::l

Rflag=0 - Welag:=1 - Waata:=17

From event structures theory to weak memory models - Simon Castellan 4 /32

Structure behind traces

Wflag::l Waata:=17 - R-flag:l - Rdata=17
Wflag::l : Rflag:l “Waata:=17 - Raata=17

Waata:=17 wflag::l : R-flag:l - Raata=17

{ wflag::l : Rflag:l " Raata=0 - Waata:=17

Rflag:O - Waata:=17 - wflag::l
Waata:=17 - Rflag:O ’ wflag::l

Rflag=0 - Welag:=1 - Waata:=17

Wflag::l Waata:=17
v v

Rflag:l —> Raata=17

wflag::l Raata=0
v

Rflag:l Waata:=17

From event structures theory to weak memory models - Simon Castellan

4/32

Structure behind traces

Welag:=1 - Waata:=17 - Rf1ag=1 - Raata=
flag:=1 data:=17 flag=1 data=17 Wflag::l Waata:—17
Wflag::l : Rflag:l “Waata:=17 - Raata=17 v %

Waata:=17 wflag::l : R-flag:l - Raata=17 Rflagzl —> Raata=17

wflag::l Rdata:O
{ wflag::l : Rflag:l Raata=0 * Waata:=17 v /v Y&

R-flag:l Waata:=17

Rflag:O “Waata:=17 - wflag::l Rflag*O Wanta:—17
Waata:=17 - Rflag:O : wflag::l v

Rflag=0 - Welag:=1 - Waata:=17 Welag:=1

From event structures theory to weak memory models - Simon Castellan 4 /32

Structure behind traces

Welag:=1 - Waata:=17 - Re1ag=1 - Rdata=1
ag: ata:=17 ag ata=17 Wflag::]_ Waata:=17

Wflag::l : Rflag:l “Waata:=17 - Raata=17 V4 v

Waata:=17 - Wriag:=1 - Re1ag=1 - Raata=17 Rf1ag=1 > Rdata=17

wflag::l Raata=0
{ wflag::l : Rflag:l " Raata=0 - Waata:=17 V4 /v Jy

R-flag:l Waata:=17

Retag—0 - Wancarm17 - Welagie
flag=0 data:=17 flag:=1 Rflag:O Wanta:—17
Waata:=17 - Rflag:O : wflag::l V4

Rflag=0 - Welag:=1 - Waata:=17 Welag:=1

From event structures theory to weak memory models - Simon Castellan 4 /32

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

wflag::l

Y
wflag::l Waata:=17 Rflag:l Rflag:O Waata:=17
% v v %
Rflag:l —- Rdata:17 Rdatazo wdata::l

Y

Waata:=17

From event structures theory to weak memory models - Simon Castellan 5 /32

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

wflag::l

Y
wflag::l Waata:=17 Rflag:l Rflag:O Waata:=17
% v v %
Rflag:l —- R'data:17 Rdatazo wdata::l

Y

Waata:=17

This set of partial orders can be summed by an event structure:

Waata:=17 Weilag:=1 ~~ Re1ag=0
v v v
Riata=17 <— Rf1ag=1 Wsiag:=1

el Y
Raata=0
v

Waata:=17

From event structures theory to weak memory models - Simon Castellan

5/32

Sets of partial orders and event structures

The set of partial orders describes the semantics of mp:

wflag::l
wflag::l Waata:=17 Rflag:l Rflag:O Waata:=17
’ Vb’ ’
Rflag:l - R'data:17 Rdata:O wdata::l
Waata:=17

This set of partial orders can be summed by an event structure:

Waata:=17 Weilag:=1 ~~ Re1ag=0
Riata=17 <— Rf1ag=1 Weiag:=1
R

Raata=0

Waata:=17

From event structures theory to weak memory models - Simon Castellan 5 /32

This talk

1. A semantics for , and a semantics for memory

2. Using theory to mix them.

3. Applications to theory and practice.

From event structures theory to weak memory models - Simon Castellan 6/32

1. A SEMANTICS FOR THREADS, AND A SEMANTICS FOR
MEMORY

Modelling MiniARM

From event structures theory to weak memory models - Simon Castellan

MiniARM: An assembly language with relaxed semantics
Syntax. ldents split in thread-local registers and global variables.
ex=rlete|...
ti=fence;t|x:=et|r<xt
pu=t] ...t

Actions. We observe the following actions from the programs:

Y =W,.—k | Ry—k | fence.

Semantics. Described by a labeled transition system on states p, u:

(pOu) “ (pey). (up :Var —N)

It is relaxed: operations on independent variables can be reordered.

From event structures theory to weak memory models - Simon Castellan 8/32

A few rules

Thread rules: (t@ p) EN (o) :

(x = k; tou) = (topfx == K])

From event structures theory to weak memory models - Simon Castellan 9/32

A few rules

Thread rules: (t@ p) EN (o) :

ence

(x = k; t@,u> 5 (teu[x = k]) (fence; tOu) —— (tOu)

From event structures theory to weak memory models - Simon Castellan 9/32

A few rules

Thread rules: (t@ p) EN (o) :

ence

(x = k; t@,u> 5 (teu[x = k]) (fence; tOu) —— (tOu)

<t©u> (t'ou”) ¢ #+ fence var(l) # x
(x := k; t@pu) EN (x = k; t'ey/)

From event structures theory to weak memory models - Simon Castellan 9/32

A few rules

Thread rules: (t@ p) EN (o) :

ence

(x = k; t@,u> 5 (teu[x = k]) (fence; tOu) —— (tOu)
<t©u> (t'ou”) ¢ #+ fence var(l) # x
(x 1= k; tou) 5 (x == k; o)
And then:
(@) 5 (o)
(el @) S (e oo [] £ @)

From event structures theory to weak memory models - Simon Castellan

9/32

Operational traces and memory states

These rules generates the operational (partial) traces:

Tr(p,p) = {l1... Lo | (p@u) 25 ... L2 (@)}

From, there we can compute the final memory states:

MemStates(p) = {u(t) | t € Tr(p,) is a maximal trace}.
where p(t) = x + last value written to x or zero.
V=N

From event structures theory to weak memory models - Simon Castellan 10/ 32

Labeled event structures

Definition a2 b
A (X-labeled) event structure is a tuple S v
(E,<g,te,0: E — X) where (E,<g) is a partial c d
order and fg is a symmetric relation on E, ‘Z

satisfying finite causes and conflict inheritance.

From event structures theory to weak memory models - Simon Castellan 11/32

Labeled event structures

Definition

A (X-labeled) event structure is a tuple L
(E,<g,te,0: E — X) where (E,<g) is a partial d
order and fg is a symmetric relation on E,
satisfying finite causes and conflict inheritance.

o <t

» Configurations are downclosed, conflict-free subsets of E.
% '(E) is the set of configurations of E.

From event structures theory to weak memory models - Simon Castellan 11/32

Labeled event structures

Definition

A (X-labeled) event structure is a tuple Y
(E,<g,tg, 0 E — X) where (E,<g) is a partial
order and fg is a symmetric relation on E,
satisfying finite causes and conflict inheritance.

o <+

» Configurations are downclosed, conflict-free subsets of E.
% (E) is the set of configurations of E.

» A trace of E is a linearisation of a configuration of E.

Tr(E) is the set of traces of E (can be seen as a subset of L*).

Our goal: a mapping [-] from states to event structures s.t.:

Tr(p, u) = Tr[p, ul.

From event structures theory to weak memory models - Simon Castellan

11/32

An overview of the semantics

1. Thread semantics: context is left open (and unknown)

T

wflag::l Waata:=17 Rflag:O ~ Rflag:l ~ Rflag:2

v

R-data:O ~ Rgata=1 ~e ot

2. Final semantics: context is assumed empty
Compute interactions with memory:

Waata:=17 W:IElag::l ~ Rflag:O
Raata=17 <— Rflag=1 Wfiag:=1
'\,\/\/\’ ¥
Rata=0

Waata:=17

From event structures theory to weak memory models - Simon Castellan

Thread semantics

fence
Fences. [fence;t] = fence - [t] v

(See=<g U{(£.0)}) [t]

From event structures theory to weak memory models - Simon Castellan 13 /32

Thread semantics

fence
Fences. [fence;t] = fence - [t] v

(<ve=ze V(L)) ol
Wx::k
Writes. [x := k; t] = Wy.—k;] & Q
_ ’ _ ' [t]
(<p.e=<g U{({,fence), (¢, V') | var(f) = var(¢')}).

From event structures theory to weak memory models - Simon Castellan 13 /32

Thread semantics

Fences. [fence;t] = fence - [t]

(See=<e U{(£,)})

Writes. [x := k; t] = Wy.—k;]
(<p.e=<g U{({,fence), (¢, V') | var(f) = var(¢')}).
Reads. [r < x;t] = > o Re=n: [t[n/r]]

Ry—o0

= RX:l ANNAN~ .

gﬂt[o/f]]]é éﬂt[l/f]ﬂé

From event structures theory to weak memory models - Simon Castellan

fence

13/32

Thread semantics

Fences. [fence;t] = fence - [t] fez;ce

(See=<e U{(¢,0)}) [t]

Wri — ke t] = _ Wy —k
rites. [x := k; t] = We.—g; [t] & N /Q

(<ee=<g U{({, fence), (4, ') | var(f) = var(f)}).
Reads. [r < x;t] = > o Re=n: [t[n/r]]

Ry—o0

= RX:l ANNAN~ .

gﬂt[o/f]ﬂé éﬂt[l/f]ﬂé

Program. No interaction: [t1 || ... || ta] = [ta] || - - [ta]-

From event structures theory to weak memory models - Simon Castellan 13 /32

Wiring memory behaviour

The memory behaviour is specified through consistent traces:

Cu =Wy C,u[x::k] | fence - Cu | Reep(x) Cu

Theorem
For a machine state (p, 1), Tr(p, 1) = Trlp] N C,.

From event structures theory to weak memory models - Simon Castellan 14 /32

Wiring memory behaviour

The memory behaviour is specified through consistent traces:
Cu =Wy C,u[x::k] | fence - Cu | Reep(x) Cu
Theorem

For a machine state (p, 1), Tr(p, 1) = Trlp] N C,.

But | promised an e.s. [p, p]]! (causally account for memory)

From event structures theory to weak memory models - Simon Castellan 14 /32

Causal account for the memory

~+ Instead of a set of traces C,, a set of partial orders €,,.

No canonical notions, but several compromises:
Definition
A partial order q is:

» semantically consistent when Tr(q) C C,.

» syntactically consistent when for each variable x, actions in
q on x are linearly ordered.

From event structures theory to weak memory models - Simon Castellan 15 / 32

Causal account for the memory

~+ Instead of a set of traces C,, a set of partial orders €,,.

No canonical notions, but several compromises:
Definition
A partial order q is:

» semantically consistent when Tr(q) C C,.

» syntactically consistent when for each variable x, actions in
q on x are linearly ordered.

¢ = {q | q semantically consistent}.

¢)" = {q | q syntactically consistent}.

We have Tr(%52™) = Tr(%,)") = C, but €™ C 67"

From event structures theory to weak memory models - Simon Castellan

15 /32

II. EVENT STRUCTURE THEORY

How to merge [p] and ¢,

From event structures theory to weak memory models - Simon Castellan 16 / 32

Briding a gap: event-based and execution-based models

ES

[Pl

From event structures theory to weak memory models - Simon Castellan 17 /32

Briding a gap: event-based and execution-based models

ES Set(PO)

[Pl G

From event structures theory to weak memory models - Simon Castellan 17 /32

Briding a gap: event-based and execution-based models

Wx::l Wx::l
Vo, 0
Ry—2 Ry=3

From event structures theory to weak memory models - Simon Castellan 17 / 32

Briding a gap: event-based and execution-based models
%()

ES—_ se(Po)

\ Wx;:l Wx;:]_
[2]
Ry—2 Ry=3

From event structures theory to weak memory models - Simon Castellan 17 / 32

Briding a gap: event-based and execution-based models

%()

\ Wx;:l Wx;:]_
[2]
Ry—2 Ry=3
wX::1 — WX::1 /
v ¥

Ry—2 Ry=3

From event structures theory to weak memory models - Simon Castellan 17 / 32

Briding a gap: event-based and execution-based models

%()

Wx::l Wx::l
Vo, 0

wx::l ~ wx::l

¥ ¥

Ry—2 Ry=3

\

From event structures theory to weak memory models - Simon Castellan 17 / 32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):

Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):

Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

a b b a
2= {a}v{b}v v) ¥) v) b/ X
c c d c d

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):

Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):
Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

b b a
Q — 7{b}7 9 ‘§ 9 ﬁ 9 K X
c d c d
b
Pr(2)= °
c c d

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):
Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

a
2=q1{a},1b1,§ v ¢ Y ey K w
c d c d
b
Pr(Q):i
c c d

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):
Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

(S
I
~—
L)
nat
o <to
o <to
N
¢

'U
X
=
S
N—r
Il
o<t o
I\

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):
Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

a b b a
Q = 9 9 x%) ‘§ 9 ﬁ 9 K X
c c d c d
a b
Pr(2) = J v %
c c d

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):

Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

a a
2=q{ah{b},{ v ¢> ,) Ko
c c d
Pr(2) = j:w“;}bx
c c d

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):

Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

a a

2= {a}v{b}v v))) [/ X
c c d
RO)
P2 =1 7\
c c d

From event structures theory to weak memory models - Simon Castellan 18 /32

The prime construction: details
Consider a set 2 € Set(PO) closed under prefix. We define Pr(2):
Events Those q € 2 with a top element
Causality q < g’ when q is a prefix of ¢
Conflict @ ~ q' when they have no upper bound in 2.

a b b a
2= {a}v{b}v v) ¥) v) b/ X
c c d c d
a ~~n b
Pr(2) = J v %
c c d

NB: ¢(Pr(2)) = 2.

From event structures theory to weak memory models - Simon Castellan 18 /32

A partial product on partial orders

Given two partial orders <q, <q on the same carrier set, write:

(quq’)* if a partial order

AN =
a7 undefined otherwise

From event structures theory to weak memory models - Simon Castellan 19 /32

A partial product on partial orders

Given two partial orders <q, <q on the same carrier set, write:

N (quq’)* if a partial order
qhg = .) .
undefined otherwise
Wa:=17 We=1 Remy A Wa:=17 W1 — Rea _ Wa:=17 Wg=1> Remy
Ra=17 . Ra=17] Ra=17

€%([mp]) €6

A partial product on partial orders

Given two partial orders <q, <q on the same carrier set, write:

1\ * . .
ang = (quq’) if a partial order
undefined otherwise
Wa=17 We=1 Ri=m A Wa:=17 We=1 —> Re=1 _ Wa=17 We:=15 Rem
Ra=17 - Ra=17) Ra=17
% ([me]) B
Wa:=17 We=1 Re= Wa:=17 > Wemg > Rea .
A A = undefined
Ra=17 Ra—o

From event structures theory to weak memory models - Simon Castellan 19 /32

... generating a product on event structures

For P, Q € Sets(PO), let:

P+Q={pAq|p€cP,qecQ}.

From event structures theory to weak memory models - Simon Castellan

.generating a product on event structures

For P, Q € Sets(PO), let:

P+Q={pAq|p€cP,qecQ}.

For E, E' € ES, let:

ExE' = Pr(¢(E)+%(E")).

From event structures theory to weak memory models - Simon Castellan 20/ 32

... generating a product on event structures

For P, Q € Sets(PO), let:

P+Q={pAalpeP,qgeQ}
For E,E' € ES, let:
ExE' = Pr(¢(E)+%(E")).

Theorem
Both operations are categorical products.

Note:
Tr(ExE’") = Tr(E) N Tx(E")

From event structures theory to weak memory models - Simon Castellan

[llustrations of this construction

» Conflicts are merged:

(oos e)e(s bme)=(smbme)

From event structures theory to weak memory models - Simon Castellan

lllustrations of this construction
» Conflicts are merged:

(oos e)e(s bme)=(smbme)

» Events with incompatible histories are duplicated:

(5o b)- ‘i _ i

A

v
b

From event structures theory to weak memory models - Simon Castellan 21/32

A final model

Define [p, u[™™ = Pr(%'([p])*%,;7*™). We have:

Tr[p, u|™™ = Tr[p] N Tr[€7"] = Tr[p] N Cu = Tr(p, p).

Yields the desired result:
Waata:=17 Wflag::l ~ Rflag:O
Rdata=17 <— R1ag=1 Welag:=1
[[mp, (X — O)HSyn _ ata M,\x ;g ag

Rgata=0

Wdata::l?

From event structures theory to weak memory models - Simon Castellan

N
N

N

I1I. APPLICATIONS

(1) Theory: Data racefreedom
(Joint work with Jade Alglave and Jean-Marie Madiot)

From event structures theory to weak memory models - Simon Castellan

Races and sizes

A race: two co-located concurrent accesses (among which a write).

r < data

data := Oxdeadbeef
assert (data € {0,0xdeadbeef })

If data is two words, we might see: data = 0xdead0000.

From event structures theory to weak memory models - Simon Castellan 24 /32

Races and sizes

A race: two co-located concurrent accesses (among which a write).

r < data

data := Oxdeadbeef
assert (data € {0,0xdeadbeef })

If data is two words, we might see: data = 0xdead0000.

But, mp should be ok:

data := 17;
flag:=1

r < flag;
if(r == 1){v < data}

The race on flag does not matter since flag is “small”.

From event structures theory to weak memory models - Simon Castellan 24 /32

“Small locations” and the notion of race
To model this, we split variables into two groups:

multi word variables single word variables.

Races on single words variables are ok (necessary to implement eg.
locks).

Definition
A race of a program p is a a trace w € (N x X)* of the form:

w=..."- (iaRx:k) : (_jawx::k’)
with i/ # j and x is a multi word variable.
Definition

A program is well-synchronized (or race-free) when none of its
traces on SC are races.

From event structures theory to weak memory models - Simon Castellan 25 /32

Data-Racefreedom

A wanted property for most architectures:

Definition (Data Racefreedom (DRF))

An architecture A satisfies (DRF) when for all well-synchronized
program p,

MemStatessc(p) = MemStates 4(p).

From event structures theory to weak memory models - Simon Castellan

Data-Racefreedom
A wanted property for most architectures:

Definition (Data Racefreedom (DRF))

An architecture A satisfies (DRF) when for all well-synchronized

program p,

MemStatessc(p) = MemStates 4(p).
Theorem
Our architecture MiniARM satisfies data racefreedom.
Proof.
In two steps:

1. Show that if p is race-free on MiniARM, then
MemStatessc(p) = MemStates 4(p).

2. If p has a race on MiniARM, then it has a race on SC.]

From event structures theory to weak memory models - Simon Castellan 26 /32

I1I. APPLICATIONS

(2) Practice: smaller structures
(Joint work with Jade Alglave and Jean-Marie Madiot)

From event structures theory to weak memory models - Simon Castellan

Two different compromises

> €M is too hard to compute (check all the traces)

» 4" is too big (forces linearisation on each variable)

~+ Can we do better? Not force all writes to be synchronized.

x:=1 HX::2

Wem1 ~ VWymp
v \%
wx::l wx::2 wx::2 wx::l

[el" [p]™"

From event structures theory to weak memory models - Simon Castellan 28 /32

Observing order

Consider:

Wx::l wx::2 R-x:l Rx—2

From event structures theory to weak memory models - Simon Castellan

Observing order

Consider:

Wx::l wx::2 R-x:l Rx—2

From event structures theory to weak memory models - Simon Castellan

Observing order

Consider:

From event structures theory to weak memory models - Simon Castellan 29 /32

Observing order

Consider:

From event structures theory to weak memory models - Simon Castellan 29 /32

Observing order

Consider:
% T
Wx =1 q B wx::2 R-x:l Rx—2
N v
R-x:2 Rx:l

By investigation, we find a set of axioms...

From event structures theory to weak memory models - Simon Castellan

Lazy consistency

Definition
A partial order q is lazily consistent when it satisfies:
» For every read ry € q, there exists a (unique) maximal write
just(wy) below ry, with the same value.
» If whenever wy :Wy.— <r,:Ry— and
wy i Wy.— <t Re— with just(rk) # wy, just(ry) # wy, then
wy < just(ry) or wy, < just(r,) (or possibily both).

We write €,,**" for the set of lazily consistent po.

From event structures theory to weak memory models - Simon Castellan 30/32

Lazy consistency

Definition
A partial order q is lazily consistent when it satisfies:

» For every read ry € q, there exists a (unique) maximal write
just(wy) below ry, with the same value.

> If whenever w, :W,.— <y Ry— and

wy i Wy.— <t Re— with just(rk) # wy, just(ry) # wy, then
wy < just(ry) or wy, < just(r,) (or possibily both).

We write €,,**" for the set of lazily consistent po.

Theorem (Weaker correctness)

Up to permutations of reads and independent writes, every trace of
a lazy consistent po is consistent.

~~ MemStates([p]'*?) = MemStates(p).

From event structures theory to weak memory models - Simon Castellan 30/32

A demo

x: =1 x:=3 | r+=x
S< X

From event structures theory to weak memory models - Simon Castellan 31/32

Related work / Extensions

Related work.
» Brookes et al.’s model of TSO with pomsets.
» Pichon et al.’s operational semantics on event structures

» Jeffrey and Riely’'s axiomatic model using event structures

Extensions. Extend this to:
» Real ARM, TSO, Linux-C, etc.

» More complicated C11 models.

From event structures theory to weak memory models - Simon Castellan

