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Introduction — Equivalences
Well-known correspondence:

Simply-typed λ-calculus ' Cartesian Closed Categories

(1)

Extension to Martin-Löf (1979) extensional type theory (TT):

ETTΣ,Π,N1 ' Locally Cartesian Closed Categories

(Seely, Curien, Hofmann, and later Clairambault&Dybjer)

By (1) normalization of STLC implies decidability of equality in the
free CCC.
The question. Can we do something similar for LCCCs?

Problems to address:

I ETT is undecidable. Which fragment?

I The free LCCC: Does it arise as the term model of ETT?
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I. Undecidability of equality – the syntax side



Undecidability in type theory

Undecidability of equality for MLTT with
I Π-types
I extensional identity types
I a universe closed under Π

Indeed, the context Γλ encodes the problem of conversion in
untyped λ-calculus:

Γλ = X : U, p : I(U,X ,X ⇒ X )

But LCCCs do not support universes. We prove a stronger result:

Theorem. Judgemental equality in MLTT with extensional identity
types, Π-types and a base type is undecidable.
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Proof of the undecidability

Proof technique. Reduction to equality in combinatory logic (CL).

CL can be encoded in the following context ΓCL over a base type o:

K : o, S : o, · : o → o → o, (term signature of CL)
p : Πxy : o. I(k · x · y , x), (k · x · y =CL x)

q : Πxyz : o. I(s · x · y · z , x · z · (y · z)) (s · x · y · z =CL x · z · (y · z))

Then, for terms of CL t and u,

t =CL u iff ΓCL ` I(t, u) is inhabited iff Γ ` t = u



II. The freeness problem



But, wait, what does free mean?

A model is free over a set X if it is initial among models with a
chosen interpretation for every element of X .

In our work, X is reduced to a single type o.

Our goal: Build a pair (C, o) where o ∈ |C|, initial in LCCCo :
I Objects: Pairs (D, o ′) where o ′ ∈ |D|.
I Morphisms: preserving the structure and o up to iso.

Problem. LCCCo does not have an initial object (no chosen
structure) !
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Bi-initiality in a 2-category

Our category LCCCo is more adequately described as a 2-category.

Taking that into account we aim for a weaker notion of initiality:

Definition (Bi-initiality)
An object A is bi-initial in a 2-category C if for each object B:

I there is a map A → B
I for parallel maps F ,G : A → B, there is a unique 2-cell

F ⇒ G .
→ There is the unique map up to unique isomorphism from A to B.

Proving this directly in our setting is combinatorially involved.
(Several problems have to dealt with at the same time.)



Categories with families to the rescue

Categories with families (cwfs) capture the kernel of dependent
type theory before the introduction of type constructors.

For our problem, we make a détour through cwfs:
I Closer to syntax of type theory (Chosen structure)
I Support 1-categorical (strict) and 2-categorical (weak)

structures.
I The biequivalence of 2-categories of Clairambault&Dybjer

LCCC ' CwFΣ,Π,I,N1
weak .



III. Constructing the free category with families



Categories with families

Categories with families axiomatize the structure of dependency in
contexts and types of MLTT.

Definition (A concrete definition of cwfs)
A category with families is a pair (C,T ) where

I C is a category of contexts and substitutions with a terminal
object 1.

I T : Cop → Fam maps Γ to (TmC(Γ,A))(A∈TyC(Γ)).
along with a context comprehension operator associating to each
Γ ∈ |C| and A ∈ TyC(Γ) a context Γ · A coming with

I Γ · A p−→ Γ

I Γ · A ` q : A[p]

satisfying a universal property.



The syntax of type theory – Raw terms

Four syntactic classes: contexts, substitutions, types, terms:

Γ ::= 1 | Γ.A
A ::= o | A[γ] | Π(A,A) | Σ(A,A) | I(a, a)
γ ::= γ ◦ γ | idΓ | 〈〉Γ | pA | 〈γ, a〉A
a ::= a[γ] | qA
| λ(A, a) | app(A, a, a)
| pair(A, a, a) | fst(A, a) | snd(A,A, a)
| refl(a)

Exactly the language of cwfs (explicit substitutions and de Bruijn
indices).



Syntax of type theory – Partial Equivalence Relations
On top of the raw terms, we define four pers:

Γ = Γ′ ` Γ ` A = A′ Γ ` f = g : ∆ Γ ` t = t ′ : A

Some (boring?) rules:

Γ′ = Γ `
Γ = Γ′ `

Γ = Γ′ ` Γ′ = Γ′′ `
Γ = Γ′′ `

Γ ` A = A′ Γ · A ` B = B ′

Γ ` Π(A,B) = Π(A′,B ′)
Γ ` a = b : A Γ ` a′ = b′ : A

Γ ` I(a, a′) = I(b, b′)

Γ ` t = t ′ : A Γ = Γ′ ` Γ ` A = A′

Γ′ ` t = t ′ : A′

Γ ` f = f : ∆
Γ ` f ◦ idΓ = f : ∆

Γ ` f = f : ∆ · A
Γ ` f = 〈pA ◦ f , qA[f ]〉A : ∆ · A

Typed terms. Γ ` is a short-hand for Γ = Γ′ ` and so on.



The term model T

The cwf T . The quotient of raw terms by the pers is a cwf:
I |T | = {Γ | Γ = Γ `}/(_ = _ `)

I T ([Γ], [∆]) = {Γ ` f : ∆ | Γ ` f = f : ∆}/(Γ ` _ = _ : ∆)

I TyT ([Γ]) = . . .

I TmT ([Γ], [A]) = . . .

Initiality of (T , [o]) with strict morphisms. Following Streicher:

I A partial interpretation is defined on the raw terms
I Its domain is proved to contain the typable terms

This yields J·K : T → C for any cwf C.
Unicity is a simple induction over the syntax.
Extends to type constructors: T Σ, T Σ,Π, . . . , T Σ,Π,I,N1 .



IV. The bifree locally cartesian closed category



T in bi-initial in CwFo
weak

T is initial in the category of cwfs with strict morphisms.

Proof of bi-initiality of (T , o) in CwFo
weak.

I We already have a (strict) morphism J·K : T → C to any cwf C.

I Let F : T → C be another morphism.
1. We build an iso ϕ : J·K⇒ F by induction on the syntax

(technically involved)

2. We prove that any other 2-cell ϕ′ : J·K→ F is equal to ϕ.

This implies that T is bi-initial.

Also extends to type constructor: T Σ,Π,I,N1 is bi-initial.



UT Σ,Π,I ,N1 is initial in LCCCo

Recall the biequivalence between cwfs and lcccs:

CwFΣ,Π,I

U
-- LCCC

T
mm

Biequivalences preserve bi-initial objects:
⇒ UT Σ,Π,I,N1 is bi-initial in LCCCo and the bifree LCCC on a base
type.



Conclusion
Summary.

I Constructed the syntax of type theory as the initial and
bi-initial cwfs.

I Generalized the result of undecidability of equality to a weaker
type theory.

I The proof can also be carried out in Burroni’s equational
presentation of LCCCs. (Remark by T. Coquand)

I A biproduct of our paper is that we construct the free cwf in a
very economical way.

Perspectives and further work
I A tension between chosen structure and universal property also

exists in CCCs.
I Prove correctness of nbe for intensional type theory through an

initiality result?


