
Weak memory models using event structures

Simon Castellan1

1LIP, ENS Lyon

March 25, 2016
Gallium Seminar

Unexpected behaviours

A simple concurrent and imperative program:

x , y initialized to 0
x := 1 y := 2
r ← y s ← x

shared variable · local register

Expected outcome: r 6= 0 ∨ s 6= 0.

Wrong on modern architectures (x86, ARM, . . .).

Weak memory models using event structures · Simon Castellan 2 / 33

Unexpected behaviours

A simple concurrent and imperative program:

x , y initialized to 0
r ← y s ← x
x := 1 y := 2

shared variable · local register

Expected outcome: r 6= 0 ∨ s 6= 0.
Wrong on modern architectures (x86, ARM, . . .).

Weak memory models using event structures · Simon Castellan 2 / 33

Unexpected behaviours

Another simple program:

x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

Expected outcome: r1 = s1 = 1⇒ r2 = s2 = 1

Wrong even without read exchange (Read Own Write Early).

Weak memory models using event structures · Simon Castellan 3 / 33

Unexpected behaviours

Another simple program:

x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

Expected outcome: r1 = s1 = 1⇒ r2 = s2 = 1

Wrong even without read exchange (Read Own Write Early).

Weak memory models using event structures · Simon Castellan 3 / 33

A need to specify the behaviour
What are the expected behaviour of a concurrent programs?
→ It depends on the architectures.

Architectures need to be specified:
I what instructions can be reordered?
I how are writes propagated from one thread to the other?

To that end, manufacturers provide prosaic documents, but:
I ambiguity: behaviours that are not specified
I inconsistent: some observations may not be predicted.

Some architectures:
I SC (Sequential consistency): no reordering, sequential memory,
I ARM: reordering of instructions targeting different variables,

write caches.
I x86: . . .

Weak memory models using event structures · Simon Castellan 4 / 33

A need to specify the behaviour
What are the expected behaviour of a concurrent programs?
→ It depends on the architectures.

Architectures need to be specified:
I what instructions can be reordered?
I how are writes propagated from one thread to the other?

To that end, manufacturers provide prosaic documents, but:
I ambiguity: behaviours that are not specified
I inconsistent: some observations may not be predicted.

Some architectures:
I SC (Sequential consistency): no reordering, sequential memory,
I ARM: reordering of instructions targeting different variables,

write caches.
I x86: . . .

Weak memory models using event structures · Simon Castellan 4 / 33

Semantics saves the day

Semantics: Formalize mathematically the vendors specifications:
I get a (possibly computer-verified) proof of non-ambiguity,
I implement the specifications and mechanically test it against

real life architectures.

Two main types of semantics among existing models:
I operational semantics: executions are described by the runs of

an abstract machines,
I axiomatic semantics: the notion of valid execution is

axiomatized.

Those models are called weak memory models.

Weak memory models using event structures · Simon Castellan 5 / 33

Semantics and executions

The semantics generates from a program its possible executions:

Program Some executions
x := 1 y := 2
r ← y s ← x

W(1)x · W(2)y · R(2)y · R(1)x

W(2)y · R(0)x · W(2)x · R(1)y

Executions can be formalized in different ways: traces,
partial-order, ...

Weak memory models using event structures · Simon Castellan 6 / 33

This talk
A semantics that is

I denotational: executions computed by induction
I the semantics is thus compositional

I compact: based on event structures
I no combinatorial explosion

I extensible: inspired from game semantics
I it is easy to add loops, control operators, higher-order, . . .

Outline of the talk:
1. A semantics warm-up: compute the SC semantics using

traces.
2. Getting back the causality.
3. Our contribution: A parametric semantics using event

structures.
4. A game semantics aparté at the end (if time allows)

Weak memory models using event structures · Simon Castellan 7 / 33

I. A denotational semantics for SC

With traces of originality

Weak memory models using event structures · Simon Castellan 8 / 33

Syntax precedes semantics

Our very simple programming language:

e, e ′ ::= { Expressions }
k ∈ N | r ∈ R | e + e ′

ι ::= { Instructions }
| a := e (Write on a variable)
| r ← a (Read on a variable)

t ::= { Threads }
| ι; . . . ; ι

p ::= { Programs }
t1 ‖ . . . ‖ tn

In real life: conditionals and barriers.

Weak memory models using event structures · Simon Castellan 9 / 33

Denotational semantics
Goal: compute JtK ∈ E where E is some space of denotations.

Our space here: langages of traces.

Σa = V × {R, W} (Abstract memory event)
Σc = Σa × N (Concrete memory event)
E = P(Σc

∗)

Notations: R(k)x , W(k)x .

Two steps:

1. Volatile semantics JtKO : shared variables are considered
volatile: Jx := 1; r ← xKO does not guarantee to read 1 in r .

2. Closed semantics: once JtKO is calculated for the whole
program, we restrict the scope of the variable
Jx := 1; r ← xK reads 1 in r .

Weak memory models using event structures · Simon Castellan 10 / 33

Volatile semantics

Semantics of threads. Parametrized over ρ : R → N.

(Writes) Jx := e; tKρ = W(ρ(e))x · JtKρ

(Reads) Jr ← x ; tKρ =
⋃
i∈N

(
R(i)x · JtK(ρ[r ← i])

)

Semantics of programs. Obtained by interleaving (~):

Jt1 ‖ . . . ‖ tnK = Jt1K∅~ . . .~ JtnK∅

Example. Define p = (x := 1; y ← r ‖ y := 1; x ← s)

I W(1)x · W(1)y · R(3)y · R(2)x ∈ JpK

I but R(0)x · R(0)y · W(1)x · W(1)y 6∈ JpK.

Weak memory models using event structures · Simon Castellan 11 / 33

Volatile semantics

Semantics of threads. Parametrized over ρ : R → N.

(Writes) Jx := e; tKρ = W(ρ(e))x · JtKρ

(Reads) Jr ← x ; tKρ =
⋃
i∈N

(
R(i)x · JtK(ρ[r ← i])

)

Semantics of programs. Obtained by interleaving (~):

Jt1 ‖ . . . ‖ tnK = Jt1K∅~ . . .~ JtnK∅

Example. Define p = (x := 1; y ← r ‖ y := 1; x ← s)

I W(1)x · W(1)y · R(3)y · R(2)x ∈ JpK

I but R(0)x · R(0)y · W(1)x · W(1)y 6∈ JpK.

Weak memory models using event structures · Simon Castellan 11 / 33

Volatile semantics

Semantics of threads. Parametrized over ρ : R → N.

(Writes) Jx := e; tKρ = W(ρ(e))x · JtKρ

(Reads) Jr ← x ; tKρ =
⋃
i∈N

(
R(i)x · JtK(ρ[r ← i])

)

Semantics of programs. Obtained by interleaving (~):

Jt1 ‖ . . . ‖ tnK = Jt1K∅~ . . .~ JtnK∅

Example. Define p = (x := 1; y ← r ‖ y := 1; x ← s)

I W(1)x · W(1)y · R(3)y · R(2)x ∈ JpK

I but R(0)x · R(0)y · W(1)x · W(1)y 6∈ JpK.

Weak memory models using event structures · Simon Castellan 11 / 33

Closed semantics

Obtained by eliminating “inconsistent” traces (eg. W(2)x · R(3)x)

Linear memory model. A language of “consistent” traces:

M(µ : V → N) ::= ε

| R(µ(x))x ·M(µ)

| W(k)x ·M(µ[x ← k])

M ::= M(x 7→ 0)

Closed semantics: JpK = JpKO ∩M.

Example. Write p = (x := 1; r ← y) ‖ (y := 2; s ← x)

I every trace of JpK ends with R(1)x or a R(2)y .

Weak memory models using event structures · Simon Castellan 12 / 33

Summary

Advantages.
I Easy to define semantics, by induction on programs.
I By making M more complex, complex cache schemes can be

handled

Drawbacks.
I Combinatorial explosion due to interleavings.
I How to model reordering of instructions?

Towards partial-orders.
I Because of reorderings, threads are not totally ordered
I Our goal: compute fine precisely dependencies between the

instructions, given an architecture.

Weak memory models using event structures · Simon Castellan 13 / 33

II. Event structures

Raiders of the lost causality

Weak memory models using event structures · Simon Castellan 14 / 33

Replacing traces by partial-orders
Idea: volatile semantics should be a set of partial-orders.

Term:

x := 1; y := 1;

r ← x ; s ← y ;

z := s + t

I traces on Σc becomes partially ordered multisets over Σc

(pomsets)
I JtKO becomes a set of such pomsets.
I Problem: lots of redundancies in the pomsets..

Weak memory models using event structures · Simon Castellan 15 / 33

Replacing traces by partial-orders
Idea: volatile semantics should be a set of partial-orders.

Dependencies (depends on the architecture):

x := 1 y := 1

r ← x s ← y

z := r + s

I traces on Σc becomes partially ordered multisets over Σc

(pomsets)
I JtKO becomes a set of such pomsets.
I Problem: lots of redundancies in the pomsets..

Weak memory models using event structures · Simon Castellan 15 / 33

Replacing traces by partial-orders
Idea: volatile semantics should be a set of partial-orders.

Executions (depends on the architecture):

W(1)x W(1)y

R(i)x R(j)y

W(i+j)
z

for i , j ∈ N2.

I traces on Σc becomes partially ordered multisets over Σc

(pomsets)
I JtKO becomes a set of such pomsets.

I Problem: lots of redundancies in the pomsets..

Weak memory models using event structures · Simon Castellan 15 / 33

Replacing traces by partial-orders
Idea: volatile semantics should be a set of partial-orders.

Executions (depends on the architecture):

W(1)x W(1)y

R(i)x R(j)y

W(i+j)
z

for i , j ∈ N2.

I traces on Σc becomes partially ordered multisets over Σc

(pomsets)
I JtKO becomes a set of such pomsets.
I Problem: lots of redundancies in the pomsets..

Weak memory models using event structures · Simon Castellan 15 / 33

Can we sum up all executions in a single object?
Can we glue the executions all together in a partial-order? For
instance:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

Which sets of events w are (partial) executions?
I w must be downward-closed for _

I and . . . ? {W(1)x , R(0)x , R(1)x } cannot be a valid execution.

⇒ Need more structure than a partial-order: conflicts.

Weak memory models using event structures · Simon Castellan 16 / 33

Can we sum up all executions in a single object?
Can we glue the executions all together in a partial-order? For
instance:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

Which sets of events w are (partial) executions?
I w must be downward-closed for _
I and . . . ? {W(1)x , R(0)x , R(1)x } cannot be a valid execution.

⇒ Need more structure than a partial-order: conflicts.

Weak memory models using event structures · Simon Castellan 16 / 33

Can we sum up all executions in a single object?
Can we glue the executions all together in a partial-order? For
instance:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

Which sets of events w are (partial) executions?
I w must be downward-closed for _
I and . . . ? {W(1)x , R(0)x , R(1)x } cannot be a valid execution.

⇒ Need more structure than a partial-order: conflicts.

Weak memory models using event structures · Simon Castellan 16 / 33

Event structures save the day

Definition (Event structures)
A set of event E with:

I A notion of causality represented by a partial order ≤E

I A notion of conflict represented by a relation E

I A labelling l : E → Σ.
(+ axioms)

Definition (Configuration or partial execution)
A configuration of E is a subset w of E :

I downward-closed: e ≤ e ′ ∈ w ⇒ e ∈ w .
I that does not contain two conflicting events

Weak memory models using event structures · Simon Castellan 17 / 33

Event structures save the day
On the example:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

We have the configuration:

W(1)x

W(1)y

R(1)x R(1)y

W(2)z

Weak memory models using event structures · Simon Castellan 18 / 33

Event structures save the day
On the example:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

We have the configuration:

W(1)x

W(1)y

R(1)x R(1)y

W(2)z

Weak memory models using event structures · Simon Castellan 18 / 33

Event structures save the day
On the example:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

We have the configuration:

W(1)x

W(1)y

R(1)x

R(1)y

W(2)z

Weak memory models using event structures · Simon Castellan 18 / 33

Event structures save the day
On the example:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

We have the configuration:

W(1)x W(1)y

R(1)x

R(1)y

W(2)z

Weak memory models using event structures · Simon Castellan 18 / 33

Event structures save the day
On the example:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

We have the configuration:

W(1)x W(1)y

R(1)x R(1)y

W(2)z

Weak memory models using event structures · Simon Castellan 18 / 33

Event structures save the day
On the example:

W(1)x W(1)y

R(0)x R(1)x · · · R(0)y R(1)y · · ·

W(0)z W(1)z W(2)z W(1)z · · ·

We have the configuration:

W(1)x W(1)y

R(1)x R(1)y

W(2)z
Weak memory models using event structures · Simon Castellan 18 / 33

III. Designing a semantics with event structures

Dessine-moi une structure d’événements

Weak memory models using event structures · Simon Castellan 19 / 33

Defining architectures

Now we define an architecture A as a pair (_A ,E):
I _A⊆ Σa × Σa indicates which causality cannot be erased.
I EA is an event structure representing the memory model.

Examples for _A :
I _SC= Σa × Σa

I _ARM= {(e, e ′) | v(e) = v(e ′)} (v(x ,_) = x).
I _x86= ...

Examples for EA include all languages M ⊆ Σ∗c (they can be
viewed as event structures).

Weak memory models using event structures · Simon Castellan 20 / 33

Computing the semantics JpKA

As previously, in two steps:

I Volatile semantics:

I threads: JtKOA is defined as previously but where the causality
outside _A are relaxed.

I programs: Jt1 ‖ . . . ‖ tnKOA = Jt1KOA ‖ . . . ‖ JtnKOA
where ‖ is parallel composition.

I Closed semantics: JpKA = JpKOA ∧ EA

where ∧ is the synchronized product: a generalization of
intersection of languages to event structures.

Weak memory models using event structures · Simon Castellan 21 / 33

Volatile semantics

Pour t =

 s ← x ; x := s;

t ← y ; y := t;

z := s + t

, on a:

R(0)x R(1)x

W(0)x W(1)x

R(0)y R(1)y R(0)y R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(SC)

Weak memory models using event structures · Simon Castellan 22 / 33

Volatile semantics

Pour t =

 s ← x ; x := s;

t ← y ; y := t;

z := s + t

, on a:

R(0)x R(1)x

W(0)x W(1)x

R(0)y R(1)y R(0)y R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(SC)

Weak memory models using event structures · Simon Castellan 22 / 33

Volatile semantics

Pour t =

 s ← x ; x := s;

t ← y ; y := t;

z := s + t

, on a:

R(0)x R(1)x

W(0)x W(1)x

R(0)y R(1)y R(0)y R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(x86)

Weak memory models using event structures · Simon Castellan 22 / 33

Volatile semantics

Pour t =

 s ← x ; x := s;

t ← y ; y := t;

z := s + t

, on a:

R(0)x R(1)x

R(0)y W(0)x R(1)y R(0)y W(1)x R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(x86)

Weak memory models using event structures · Simon Castellan 22 / 33

Volatile semantics

Pour t =

 s ← x ; x := s;

t ← y ; y := t;

z := s + t

, on a:

R(0)x R(1)x

R(0)y W(0)x R(1)y R(0)y W(1)x R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

(ARM)

Weak memory models using event structures · Simon Castellan 22 / 33

Volatile semantics

Pour t =

 s ← x ; x := s;

t ← y ; y := t;

z := s + t

, on a:

R(0)x R(1)x

R(0)y W(0)x R(1)y R(0)y W(1)x R(1)y

W(0)y W(1)y W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

Weak memory models using event structures · Simon Castellan 22 / 33

Volatile semantics

Pour t =

 s ← x ; x := s;

t ← y ; y := t;

z := s + t

, on a:

R(0)x R(1)x R(0)y R(1)y

W(0)x W(1)x W(0)y W(1)y

W(0)z W(1)z W(1)z W(2)z

Weak memory models using event structures · Simon Castellan 22 / 33

The memory model E
Define a consistent execution to be a Σc -labelled partial-order
(q,≤q) satisfying:

1. Write serialization. Writes on a variable are totally ordered.

W(1)x W(3)x W(4)x

W(2)y W(0)y

2. Coherent reading. For e = R(k)x ∈ q, W(k)x is the maximal
event of {W(n)x ∈ q | W(n)x ≤ e}

W(2)y

W(2)x W(3)x R(0)y R(3)x

Theorem. There is an event structure E whose configurations are
exactly consistent partial-orders.

Weak memory models using event structures · Simon Castellan 23 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x R(1)x R(0)y R(1)y

R(0)y R(1)y R(0)y R(1)y R(0)x R(1)x R(0)x R(1)x

(Volatile semantics for SC)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x R(1)x R(0)y R(1)y

R(0)y R(1)y R(0)y R(1)y R(0)x R(1)x R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x R(1)x R(0)y R(1)y

R(0)y R(1)y R(0)y R(1)y R(0)x R(1)x R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x

R(1)x R(0)y R(1)y

R(0)y R(1)y

R(0)y R(1)y R(0)x R(1)x R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

Example

p =
x := 1 y := 1
r1 ← x s1 ← y
r2 ← y s2 ← x

W(1)x W(1)y

R(0)x

R(1)x

R(0)y

R(1)y

R(0)y R(1)y

R(0)y R(1)y

R(0)x R(1)x

R(0)x R(1)x

(Computing JpKOSC ∧ E)

We can observe r1 = s1 = 1 ∧ r2 = s2 = 0.

Weak memory models using event structures · Simon Castellan 24 / 33

E is too relaxed

Consider p =

(
x := 1 r ← x y := 1

s ← y t ← x

)
The denotation JpKOSC ∧ E contains the configuration:

W(1)x R(1)x W(1)y

R(0)y R(0)x

This allows the observation: r = 1 ∧ s = t = 0 which is not
possible with TSO (x86’s memory model).

Problem. With TSO, writes becomes visible to all others threads
at the same time.

Weak memory models using event structures · Simon Castellan 25 / 33

Defining ETSO

1. We need our model to be “thread-aware”:

W(1,1)x R(2,1)x W(3,1)y

R(2,0)y R(3,0)x

2. Say a consistent execution satisfies the TSO criterion, when:

for all writes w ∈ q,
for all incomparable reads r , r ′ ∈ q in a different thread than w

(w ≤ r) iff (w ≤ r ′)

3. Define ETSO to be the set of consistent execution satisfying
this criterion.

Weak memory models using event structures · Simon Castellan 26 / 33

IV. The game semantics behind all that

La sémantique des jeux vue du ciel

Weak memory models using event structures · Simon Castellan 27 / 33

Idealized Parallel Algol

Throwing in simply-typed λ-calculus to our language we get IPA:

A,B := int | var | unit | A⇒ B

t, u := x | λx . t | t u

| readvar→unit | writevar→int→unit

| new xvar in t (t has type int or unit)
| (t; u) | (t ‖ u)

I Comes with an SC and call-by-name operational semantics.
I Giving semantics: a semantics for λ-calculus plus operators for

read, write, ...
I Games semantics: types → games, programs → strategies.
I We have good trace-based games model for that.

Weak memory models using event structures · Simon Castellan 28 / 33

The usual strategy for read

An example.

x : var int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 29 / 33

The usual strategy for read

An example.

x : var int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 29 / 33

The usual strategy for read

An example.

x : var int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 29 / 33

The usual strategy for read

An example.

x : var int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 29 / 33

The usual strategy for read

An example.

x : var int

ask

rd

k

k

Problem. No access to the continuation to break causalities.

Weak memory models using event structures · Simon Castellan 29 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 30 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 30 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 30 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 30 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 30 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask

done

k done

Weak memory models using event structures · Simon Castellan 30 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask

done

k

done

Weak memory models using event structures · Simon Castellan 30 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k

done

Weak memory models using event structures · Simon Castellan 30 / 33

Changing the type of read
The read operation becomes let : var→ (int→ unit)→ unit:

l e t r ead x f =
l e t z = ! x in f z

This gives the following strategy:

x : var f : (int unit) unit

run

rd

k

run

ask done

k done

Weak memory models using event structures · Simon Castellan 30 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 31 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 31 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd

run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 31 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 31 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 31 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask

done

k done

Weak memory models using event structures · Simon Castellan 31 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask

done

k

done

Weak memory models using event structures · Simon Castellan 31 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k

done

Weak memory models using event structures · Simon Castellan 31 / 33

Adding concurrency in the mix
But we have space to make it more concurrent!

l e t r ead x f =
l e t t h r = spawn (fun () −> ! x) in
f (l azy (wa i t t h r))

This gives the following strategy:

x : var f : (int unit) unit

run

rd run

k

ask done

k done

Weak memory models using event structures · Simon Castellan 31 / 33

Example

Consider t = let x (λn.write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 32 / 33

Example

Consider t = let x (λn.write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 32 / 33

Example

Consider t = let x (λn.write y 1; n + 1):

x : var y : var int

ask

rd

write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 32 / 33

Example

Consider t = let x (λn.write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 32 / 33

Example

Consider t = let x (λn.write y 1; n + 1):

x : var y : var int

ask

rd write1

n

ok

n + 1

Weak memory models using event structures · Simon Castellan 32 / 33

Example

Consider t = let x (λn.write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 32 / 33

Example

Consider t = let x (λn.write y 1; n + 1):

x : var y : var int

ask

rd write1

n ok

n + 1

Weak memory models using event structures · Simon Castellan 32 / 33

Conclusion
Summary.

I We defined an denotational and extensible interpretation of
concurrent programs in terms of event structures.

I The interpretation is parametric over the architecture.

Extensions.
I We can define sub-models of E corresponding to actual

architectures.
I The model is inspired from a game semantics model and

simplified in this first-order setting.

To go further.
I Look at barriers
I Compare that with axiomatic semantics (executions)
I Theorems?

Weak memory models using event structures · Simon Castellan 33 / 33

