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Two Sides of the Same Coin: Session Types and Game
Semantics
A Synchronous Side and an Asynchronous Side

SIMON CASTELLAN, Imperial College London, United Kingdom

NOBUKO YOSHIDA, Imperial College London, United Kingdom

Game semantics and session types are two formalisations of the same concept: message-passing open programs
following certain protocols. Game semantics represents protocols as games, and programs as strategies; while
session types specify protocols, and well-typed π -calculus processes model programs. Giving faithful models

of the π -calculus and giving a precise description of strategies as a programming language are two difficult

problems. In this paper, we show how these two problems can be tackled at the same time by building an

accurate game semantics model of the session π -calculus.
Our main contribution is to fill a semantic gap between the synchrony of the (session) π -calculus and the

asynchrony of game semantics, by developing an event-structure based game semantics for synchronous

concurrent computation. This model supports the first truly concurrent fully abstract (for barbed congruence)

interpretation of the synchronous (session) π -calculus. We further strengthen this correspondence, establishing

finite definability of asynchronous strategies by the internal session π -calculus. As an application of these

results, we propose a faithful encoding of synchronous strategies into asynchronous strategies by call-return

protocols, which induces automatically an encoding at the level of processes. Our results bring session types

and game semantics into the same picture, proposing the session calculus as a programming language for

strategies, and strategies as a very accurate model of the session calculus. We implement a prototype which

computes the interpretation of session processes as synchronous strategies.
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1 INTRODUCTION
Over the last 25 years, game semantics [Abramsky et al. 2000, 1994; Hyland and Ong 1994, 2000]

has been used as a versatile framework for constructing the first syntax-independent (often fully-

abstract) models for a variety of programming languages, exhibiting a wide range of computational

effects such as, e.g.., state [Abramsky et al. 1998; Abramsky and McCusker 1999], control [Laird

1997], concurrency [Laird 2001], nondeterminism [Harmer and McCusker 1999] and probabilities

[Danos and Harmer 2002]. This versatility arises from an interactive interpretation of computation.

An open (higher-order) program is modelled by a process (called strategy) interacting with its
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27:2 Simon Castellan and Nobuko Yoshida

environment according to a protocol (described by a game). In particular, the game only depends on

the type of the program (the interface between the program and the environment), and not on the

programming language it is written in.

It has also been 25 years since another framework, session types [Honda et al. 1998; Takeuchi
et al. 1994], was proposed for codifying communication structures using protocols in concurrent,

message-passing processes. This suggests the following analogy:

Game semantics Session π -calculus
protocols games types

open programs strategies processes

In both cases, protocols are two-party and described from the point of view of one of the parti-

cipant. Actions are thus polarised: output actions correspond to Player moves, and input actions

to Opponent moves. Reversing this polarity leads in both cases to a central notion of duality: two

agents can only interact on dual types/games. According to [Hyland and Ong 1995], this analogy

captures “every essential aspect of the dialogue game paradigm so precisely that the π -calculus
presentation may as well be taken to be a formal definition”. In particular, this insight led to, e.g., the
verification of type soundness for various programming constructs [Disney and Flanagan 2015];

and a typing discipline characterising sequential computation in the π -calculus [Berger et al. 2001].
In spite of these well-known conceptual similarities, there is no work building a precise con-

nection between any dialect of the π -calculus and game semantics. Having an exact semantic

correspondence between these two worlds would be mutually beneficial: session processes could

provide a syntactic description of strategies as message-passing programs (an open problem for

concurrent game semantics); and game semantics could offer a canonical denotational (categorical)

semantics of session processes and give semantic proofs of properties (such as deadlock-freedom).

To have a close operational correspondence between processes and strategies, traditional play-

based strategies do not fit: they forget the nondeterministic branching point, a feature necessary to

obtain full abstraction for observational equivalence (barbed congruence) [Honda and Yoshida 1995;

Milner and Sangiorgi 1992]. This prompts us to base our work on concurrent games, a framework for

games and causal strategies based around ideas from concurrency theory. Initiated by [Abramsky

and Melliès 1999; Melliès 2005; Melliès and Mimram 2007], this family of game semantics has

been actively developed recently, prompted by new foundations using event structures introduced

in [Rideau and Winskel 2011]. This representation of strategies in terms of event structures is

able to remember the branching point, and, as an added benefit, it also represents games as event

structures, which support a natural interpretation of session types unlike traditional arena-based

games [Hyland and Ong 1994]. This interpretation of session types explicits a striking connection

between games and session types, describing protocols using the same constructs (sequencing,

parallel composition and duality).

However, to build a formal relationship between the session π -calculus and game semantics based

on event structures, there is still a conceptual gap to overcome. One the one hand, traditional session

processes are synchronous where two processes communicate via hand-shakes, synchronising

immediately. On the other hand, concurrent game semantics is inherently asynchronous. In game

semantics, a ubiquitous agent, copycat, plays a key role to compositionally interpret programs.

In the π -calculus, copycat corresponds to the forwarder or link agent [Honda and Yoshida 1995;

Sangiorgi 1996]) which identifies (or links) two channels by forwarding data back and forth.

For the interpretation to be sound, copycat must be a categorical identity which implies that

strategies must be invariant under composition by this agent. Since composition with copycat

breaks syntactic dependences from an output, or to an input on different channels (forcing stronger

asynchrony properties than the asynchronous π -calculus [Honda and Tokoro 1991] which only
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forbids dependences from an output), strategies cannot represent synchronous processes. This

phenomenon is due to the delay that copycat adds between the reception of a move, and its

forwarding. We say that this copycat is asynchronous.
Our main contribution is to create a model where there also exists a synchronous copycat where

the forwarding is instantaneous. In this model, strategies can play several moves at the same time
(rather than in an unspecified order) in a coincidence. Traditional models of true concurrency are

coincidence-free: two events can always be separated by a partial execution containing one but

not the other. Our main contribution is coincident event structures, an extension of prime event

structures [Winskel 1986] allowing coincidences, obtained by relaxing the causal order to a causal
preorder. We show that coincident event structures support an intensionally fully-abstract game

semantics interpretation of the session π -calculus, interpretation devised using the techniques of

[Castellan et al. 2018; Rideau and Winskel 2011].

Contribution and outline. In § 2, the paper starts by an illustration of the correspondence and

of the difficulties of bringing these two worlds together. We then introduce the synchronous session

π -calculus in § 3. Our contributions start in § 4 with an interpretation from session types to games,

which will be driving the interpretation of processes. We show that a large class of games are in

the image of the translation, hence session types can be seen a game description language. In § 5,

we introduce coincident event structures, which are then used to define coincident strategies. They

extend the strategies of [Castellan et al. 2018] and form a category without requiring any asynchrony

conditions on the strategies. In § 6, we model the session π -calculus inside coincident strategies and
show that this interpretation is intensionally fully abstract (Theorem 6.5). We then show that finite
strategies of [Castellan et al. 2018] are definable using internal session processes (processes that do
not send free names), hence exhibiting a natural programming language for them (Theorem 6.10).

Finally, in § 7, we show that our category of coincident strategies is isomorphic to a subcategory

Types Processes (§ 3) Internal Processes

Games Coincident Asynchronous

Strategies (§ 5) Strategies

fully-abstract
interpretation

(
§
6
)

fi
nite

defi
nability

(
§
6
.3
)

encoding (§ 7)

§
4

interpretation

of the concurrent strategies of [Castellan et al.

2018]. Via the result of finite definability, this

yields a sound translation from session pro-

cesses to internal session processes, which

are invariant under composition with asyn-

chronous forwarders. This outline is sum-

marised by the diagram on the left, where

text in bold denotes our contributions.

The translation from processes (without recursion) to coincident event structures has been

implemented. A version is available at http://sessiontypesandgames.github.io/

All the proofs and more examples can be found in appendix.

2 OVERVIEW OF THE MODEL
This section informally explains the problem of relating session types and game semantics, and the

reason why we introduce coincident strategies. This section does not require advanced knowledge
of session types, event structures or game semantics. We first illustrate the correspondence (§ 2.1)

and then explain the challenges to overcome to faithfully interpret processes as strategies (§ 2.2).

2.1 Illustration of the Correspondence
2.1.1 Selection and Branching. In (two-party) session types and game semantics, protocols are

described from the viewpoint of one particular participant. For instance, a simple protocol “receive
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a boolean; if received true, then send a colour; else send a quit message” is represented in the

session π -calculus, by the type T (left); or in game semantics by the game A:

T = ?tt. (!blue ⊕ !red) & ?ff. !quit A =
?tt ?ff

!blue !red !quit

In the session type, tt, ff, ... denote the labels, representing themessages exchanged. The symbols !/?

denote the polarity of the action (input/output); ⊕/&, the polarity of the choice (internal/external);

and dots, sequencing (“then”). On the other side, the game describes every message exchanged as a

move, and organises them as an event structure, which consists in a partial order _, causality, and
a relation , conflict. Causality of the game describes the sequencing in the protocol; and conflict

the possible choices of messages for one particular action. Moves of a game can be decorated by

any relevant information, e.g. in this case A is decorated by messages inherited from the protocol.

In the π -calculus, processes exchange messages and synchronise on channels, while in game

semantics strategies play and synchronise on moves. To implement this protocol as a process, we

bind the type T to a channel a, and write a well-typed process on the typing environment a : T , for
instance: ⊢ P := (a?tt. a!blue) & (a?ff. a!quit) ▷ a : T , reading as: if tt is received on a, then send

blue on a, or (&) if ff is received, then send quit. In game semantics based on event structures, a

strategy on a game will be an event structure S along with a labelling function to the game. In this

case, the interpretation of P will play on the interpretation of the context a : T obtained from A
by decorating the moves with the channel a as depicted on the right of the diagram below. The

diagram on the left represents the strategy corresponding to P along with its labelling function.

e1 e2 a?tt a?ff

e3 e4 a!blue a!red a!quit

S a : A

In general, we will omit the labelling function and draw the events as their labels.

2.1.2 Parallelism and Multiple Sessions. The previous protocol has such a simple structure that

implementations of it must be sequential. To allow for concurrent implementations, the pro-

tocols must leave the order between some actions unspecified. For instance in the protocol

b!go b!go b!go

b?ack b?ack b!tt b!ff b?ack b!tt

b!tt

S
l; r

b : B S
l ∥ r

“send go, and then receive an acknowledgement and

send a boolean in any order”. There are two inde-

pendent subparts: receiving the acknowledgement,

and sending the boolean. The corresponding game

will have two disjoint subgames for these, giving

rise to a game B. The diagram on the left depicts the

game b : B (middle) as well as two strategies on it:

one where the boolean is only sent after reception

of the acknowledgement (left); and one where the boolean is sent without waiting for the acknowl-

edgement (right). In b : B, the event b?ack is not comparable, and not in conflict with the events

b!tt and b!ff: they are concurrent.
In the session π -calculus, two independent parts of the protocols will occur on different channels.

However, at the beginning of the session there is only one channel, say b. Since after the output of
the go message, there are now two independent subprotocols, there must also be two channels. In

the π -calculus, the second name is sent as a payload of the message go. This gives two possible
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representations of this protocol as a session type (with the same game representation, namely B),
depending on which part is fulfilled by the payload channel:

T = !go⟨!ack⟩.(!tt ⊕ !ff) T ′ = !go⟨?tt & ?ff⟩. (?ack).

The syntax !go⟨S1⟩.S2 means send a message go along with a channel on which the receiver
will perform S1, and continue as S2. Because S1 is from the point of view of the receiver, there is a

natural duality in the type of the payload channel for outputs. The strategies depicted above are

the interpretations of the processes:

Pl; r = (νc)(b!go⟨c⟩.c!ack.b!tt) P
l ∥ r = (νc)(b!go⟨c⟩.(c!ack | b!tt)) on context b : T

These two processes start with a restriction (νc), creating a pair of connected channels c and c with
dual types !ack and ?ack respectively, and proceed to send c on b and continue.

In both these processes, the name c sent is created just before the sent. In the π -calculus, such
processes are called internal [Sangiorgi 1996] and sometimes abbreviated as:

Pl; r = b!go(c).c!ack.b!tt P
l ∥ r = b!go(c).(c!ack | b!tt) on context b : T

In § 6.3, we show that internal processes define a large class of event structures.

2.2 Discrepancy between Processes and Strategies
We now detail the obstacles in the way of giving a fully abstract semantics of session processes in

terms of strategies. The main obstacle is the gap between synchrony and asynchrony detailed in

§ 2.2.1. We then explain why capturing both causal dependences (§ 2.2.2) and the nondeterministic

branching point (§ 2.2.3) is also essential, and the solutions given by [Rideau and Winskel 2011]

and [Castellan et al. 2018] respectively.

2.2.1 Synchrony and Asynchrony: Copycat. A key feature of the π -calculus is free name passing. In

§ 2.1.2, we only mentioned bound name passing. For instance, the process a!go⟨b⟩ is a well-typed
session process on the typing environment b : !ack,a : !go⟨!ack⟩. The typing environment contains

two protocols “send an acknowledgement” (on b), and “send go, and then receive ack” (on a),
whose game interpretation is depicted in (1b) below. The meaning of a!go⟨b⟩ should be that the

acknowledgement on b is sent exactly when the receiver of the go message writes on the payload

channel. This leads to the strategy in (1a), which is theway that traditional game semantics interprets

free name passing [Laird 2005]. The forwarding between b and a is asynchronous: intuitively, there
can be an arbitrary delay between the input on a and the output on b. In fact, this strategy is also

the interpretation of the internal process (νc)(a!go⟨c⟩. c?ack.b!ack). The expression c?ack.b!ack is

the asynchronous forwarder between b and c for type !ack.

b!ack a!go b!ack a!go b!ack a!go

a?ack a?ack a?ack

(1a) Asynchronous forwarding (1b) Game for b : ?ack,a : !go⟨?ack⟩ (1c) Synchronous forwarding

In the session π -calculus, the two processes (νc)(a!go⟨c⟩. c?ack.b!ack) and a!go⟨b⟩ are not obser-
vationally equivalent (see Example E.1 in Appendix for more details), therefore it is not possible to

devise a fully abstract interpretation this way. In our model, we keep the same idea (to represent

free name passing via a forwarder), and use a synchronous forwarder instead which makes sure that

the input on a will occur at the same time (observationally) than the output on x : these two moves

are coincident, depicted with the line between them. (1c) depicts our interpretation of a!go⟨b⟩.
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2.2.2 Causality of Processes. Because our model is based on event structures, it computes the

causality between the actions of processes. This is important to obtain a fully abstract model,

because the processes a!tt | b!tt and a!tt.b!tt + b!tt. a!tt have the same traces but are not barbed

congruent. A causal model is necessary to distinguish them.

The main difficulty in building a causal model of the session π -calculus is interpreting the

restriction operator. Without it, the event structures expressible by processes are simply forests.

With it, every causal pattern becomes expressible (see § 6.3). We give here a little example of a non

tree-like causal behaviour. Consider the simple session type 1 = !() (send a dummy message ()) and
its dual ⊥ = ?() (receive a dummy message), whose interpretation in term of games are simply the

one-event games !() and ?(); and consider the process J = (νd)(a?().d!() | b?().d?(). c!()), well-typed
in the environment a : ⊥,b : ⊥, c : 1. This process implements a simple causal behaviour: wait for

input on a and b, and only then output on c . Our interpretation of J exactly expresses this:

J(νd)(a?().d!() | b?().d?(). c!())K =
a?() b?()

c!()
on the game a?() b?() c!()

One of the main contributions of [Rideau and Winskel 2011] is to introduce the interaction of

strategies, which is crucial to define the interpretation of the restriction operator (see § 5.3).

2.2.3 Nondeterministic Branching Point. Causality is not enough in presence of nondeterminism.

Indeed, the model of [Rideau and Winskel 2011] although being causal only supports angelic
nondeterminism, which means that nondeterministic branches that deadlock are forgotten.

∗ ∗ a!()

a!()

Ja!() +QK Ja!()K

For instance, define P = a!() and Q = (νc)(νd)(c?().d!(). a!() | d?(). c!())
(a deadlocking process). Then P +Q and P are both typable by the same

typing environment but they are not observationally equivalent. A model

based on [Rideau and Winskel 2011] would however equate these pro-

cesses by interpreting both by the strategy a!(). Using the recent method-

ology in [Castellan et al. 2018], we can define strategies with internal
actions (written ∗) which can remember that some branch may deadlock. By remembering the

nondeterministic choice, the interpretations of P + Q and P , given on the left, are not weakly

bisimilar even though the interpretation of Q is empty.

3 SESSION TYPES AND SESSION PROCESSES
This section gives a simplification of the most widely studied synchronous session calculus [Honda

et al. 1998; Yoshida and Vasconcelos 2007]. Since our main focus is on session communications,

we only allow exchanges of linear channels. The calculus is identical to the synchronous calculus

presented in [Chen et al. 2017], extended with a nondeterministic choice operator. Despite only

sharing linear names, because of recursive types and recursive processes, the language is expressive

enough to contain the encoding of nondeterministic PCF.

3.1 Session Processes
The syntax of processes is given in Table 1. We use the following sets: channel variables, ranged
over by x ,y, z . . . ; linear channels, ranged over by a,b, c,a,b, c . . . ; process variables, ranged over

by X ,Y , . . . . We write N for the set of identifiers (channel variables and linear channels), ranged

over by u,u ′, . . . ; and L for the finite set of possible labels, ranged over by l , l ′, . . . The notation ṽ
denotes a vector (v1, . . . ,vn) of values; similarly for others, for instance T̃ denotes a sequence of

types. We write a is a co-channel of a, which represents a dual end-point of a; we assume a = a.
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Table 1. Syntax of processes and types.

u ::= Identifiers
a,b, c,a,b, c ... channel | x ,y, z, ... variable

P ::= Process
0 nil | X variable

| &i ∈I u?li (x̃i ).Pi input | u!l ⟨ṽ⟩. P output

| P | P parallel | ∑
i ∈I Pi choice

| µX . P recursion | (νa)P restriction

S,T ::= Types
end end

| t variable

| &i ∈I ?li (S̃i ).Ti branching

| ⊕i ∈I !li ⟨S̃i ⟩.Ti selection

| µt.T recursion

Table 2. Reduction and structural rules.

[r-com]

k ∈ I

(νa)(a!lk ⟨̃c⟩. P | &i ∈I a?li (x̃i ).Qi ) → (νa)(P | Qk {c̃/x̃k })

[r-choice]

k ∈ I∑
i ∈I

Pi → Pk

[r-res]

P → P ′

(νc)P → (νc)P ′

[r-par]

P → P ′

P | Q → P ′ | Q

[r-struct]

P ≡ P ′ → Q ′ ≡ Q

P → Q

0 | P ≡ P
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
µX . P ≡ P{µX . P/X }
(νa)0 ≡ 0

(νa)P | Q ≡ (νa)(P | Q) (a < fn(Q))
(νa)(νb)P ≡ (νb)(νa)P

Session communications are performed between an output process and an input process where

the former sends a channel choosing one of the branches offered by the latter. The choice process∑
k ∈I Pk internally chooses one of Pk with k ∈ I . The process (νa)P is a restriction which binds

two dual channels, a and a in P , making them co-channels, i.e. allowing them to communicate (see

rule [r-com] in Table 2). This restriction is commonly used in the recent literature of session types,

e.g. [Gay and Hole 2005; Mostrous and Yoshida 2015; Yoshida and Vasconcelos 2007]. The rest of

the syntax is standard. We often omit 0 from the tail of processes. The bindings for variables are in
inputs and those for channels are in restrictions, and those for process variables are in recursions.

The derived notions of bound and free channels, channel variables, identifiers, process variables,

alpha equivalence, ≡α , and substitution are standard. We use the Barendregt convention that no

bound identifier can occur free or in two different bindings. By fn(P)/fv(P) we denote the set of
free channels and variables in P . We write a!⟨ũ⟩ and a?(ũ) when the labels sent or received are

irrelevant; and a!l and a?l when no channel is sent or received.

3.2 Operational Semantics
Table 2 defines the reduction relation and the structural rules. [r-com] is the main communication

rule between input and output at two co-channels a and a, where the label lk is selected and channels
c̃ are instantiated into the k-th input branch. [r-choice] internally chooses the k-th process, which

makes computations non-deterministic. Other rules are standard. →∗
denotes the reflexive and

transitive closure of →.

3.3 Typing Session Processes
The syntax of session types, ranged over by T and S , is given in Table 1. The branching type
&i ∈I ?li (S̃i ).Ti describes a channel willing to branch on an incoming label li , receive channels of

type S̃i , and then continue its interaction as prescribed by Ti . The selection type ⊕i ∈I !li ⟨S̃i ⟩.Ti is its
dual: it describes a channel willing to send a label li with channels of type S̃i , and then continue its
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Table 3. Session typing rules.

[t-idle]

∆ end only

Γ ⊢ 0 ▷ ∆
[t-var]

∆′
end only

Γ,X :∆ ⊢ X ▷ ∆,∆′

[t-input]

∀i ∈ I , Γ ⊢ Pi ▷ ∆,u : Ti , x̃i : S̃i

Γ ⊢ &i ∈I u?li (x̃i ). Pi ▷ ∆,u : &i ∈I ?li (S̃i ).Ti

[t-out]

Γ ⊢ P ▷ ∆,u : Tk k ∈ I

Γ ⊢ u!lk ⟨ṽ⟩. P ▷ ∆,u : ⊕i ∈I !li ⟨S̃i ⟩.Ti , ṽ : S̃k

[t-par]

Γ ⊢ P1 ▷ ∆1 Γ ⊢ P2 ▷ ∆2

Γ ⊢ P1 | P2 ▷ ∆1,∆2

[t-choice]

Γ ⊢ Pi ▷ ∆
Γ ⊢

∑
i ∈I

Pi ▷ ∆

[t-rec]

Γ,X :∆ ⊢ P ▷ ∆
Γ ⊢ µX . P ▷ ∆

[t-new]

Γ ⊢ P ▷ ∆,a : T ,a : T

Γ ⊢ (νa)P ▷ ∆

interaction as prescribed by Ti . In branching and in selection types the labels are pairwise distinct;

and the types of the exchanged channels are closed. We omit & and ⊕ and labels when there is only

one branch. We use t to range over type variables. The type µt.T is a recursive type. We assume

that recursive types are contractive (guarded), i.e. µt1. µt2 . . . µtn . t1 is not a type. The type end

represents the termination of a session and it is often omitted. We take an equi-recursive view of

types considering two types unfolding to the same regular tree as equal [Chen et al. 2017]. We

use the same convention as for processes, omitting the label when it is () or the channels when no

channels should be sent: e.g. !tt is a shorthand for !tt⟨⟩, and !⟨!quit⟩ for !()⟨!quit⟩. In ⊕i ∈I li ⟨T̃i ⟩. Si
and &i ∈I li (T̃i ). Si , Si is the continuation type, while the T̃i are the argument types of label li .
Session duality [Honda et al. 1998] ensures compatibility of communications. The function T ,

defined below, yields the dual of the session type T .

&i ∈I ?li (S̃i ).Ti = ⊕i ∈I !li ⟨S̃i ⟩.Ti ⊕i ∈I !li ⟨S̃i ⟩.Ti = &i ∈I ?li (S̃i ).Ti t = t µt.T = µt.T end = end

The session type representing the boolean type is B = !tt ⊕ !ff, and the unit type 1 = !().
The typing judgements take the form: Γ ⊢ P ▷ ∆ where Γ is the recursion environment which

associates process variables to sequences of session types and ∆ is the session environment which
associates identifiers to session types. They are defined by:

Γ ::= ∅ | Γ,X :∆ ∆ ::= ∅ | ∆,u:T

We write ∆,u:T for ∆∪{u:T } ifu < dom(∆) and ∆1,∆2 for ∆1∪∆2 when dom(∆1)∩dom(∆2) = ∅.
We say that ∆ is end-only if u : T ∈ ∆ implies T = end.

Table 3 gives the typing rules. They are essentially the same as [Chen et al. 2017]. Rule [t-idle]

is the introduction rule for the nil process. To type an input process, rule [t-input] requires the

type S ji for variable x
j
i and the type Ti of channel u for the continuation Pi . In the resulting session

environment, the type u has the branching type in which u receives S ji and then continues with Ti
for each label li . The rule for typing output processes is dual. In rule [t-par], the session environment

of P1 | P2 is the disjoint union of the environments ∆1 and ∆2 for the two processes, reflecting the

linear nature of channels. In contrast, in rule [t-choice], all of the processes have the same session

environment because at most one of them will be executed. Rules [t-var] and [t-rec] type recursive

processes, where recursive variables are typed by a session context. Rule [t-new] is a standard

rule for name binding, where we ensure the co-channels have dual types. The type system enjoys
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the standard subject reduction property. Notice that session environments are unchanged since

reduction only occurs under a restriction.

Theorem 3.1 (Theorem 2.2 in [Chen et al. 2017]). If Γ ⊢ P ▷ ∆ and P →∗ Q , then Γ ⊢ Q ▷ ∆.

3.4 Behavioural Theory
We present now the most used behavioural equivalence, reduction-based barbed congruence [Honda
and Yoshida 1995; Milner and Sangiorgi 1992], for synchronous session processes. This congruent

relation is defined as the reduction-based bisimulation closure with the minimum observability

(barbs). A process ⊢ P ▷ ∆ has a barb on b [Milner and Sangiorgi 1992], written P ↓b when:

P ≡ (νã)(b!l ⟨ṽ⟩. P ′ | Q) with b,b < {ã}.

The side condition b < {ã} ensures that Q does not contain a process which must interact with

b!l ⟨ṽ⟩. P ′
(note that b is linear: if the dual process at b is composed, the observer cannot observe b

even b is unrestricted [Kouzapas and Yoshida 2015]). We define ⊢ P ▷ ∆ ⇓a if there exists Q such

that P →∗ Q and ⊢ Q ▷ ∆ ↓a . The set of contexts is defined as:

C ::= _ | P | (C | P) | (P | C) | &i ∈I v?li (x̃i ).Ci | u!l ⟨ṽ⟩.C | ∑i ∈I Ci | µX .C | (νa)C

C[P] substitutes process P to each hole (_) in contextC . We define the reduction-closed congruence

based on the definition of barb and [Honda and Yoshida 1995; Kouzapas and Yoshida 2015] as a

typed relation: a relation R on processes relating closed terms (i.e., fv(Pi ) = ∅), typed on the same

environment. We write ⊢ P1RP2 ▷ ∆ for (P1, P2) ∈ R and ⊢ Pi ▷ ∆.

Definition 3.2 (Reduction-closed congruence). A typed relation R is a reduction-closed congruence
if it satisfies the following conditions for each ⊢ P1RP2 ▷ ∆:
(1) ⊢ P1 ▷ ∆ ⇓u iff ⊢ P2 ▷ ∆ ⇓u .
(2) • P1 →∗ P ′

1
implies that there exists P ′

2
such that P2 →∗ P ′

2
and ⊢ P ′

1
RP ′

2
▷ ∆

• the symmetric case.

(3) For all closed contextC and all ∆′
such that ⊢ C[P1],C[P2] ▷ ∆′

, we have ⊢ C[P1] R C[P2] ▷ ∆′
.

The union of all reduction-closed congruence relations is denoted as ≃.

3.5 Internal Session Processes
We also study a subset of the session calculus called the internal π -calculus [Sangiorgi 1995] where
the output only passes private (bound) names. This means that a process is internal when for every

output a!l ⟨b̃⟩ of P , b̃ is a sequence of names restricted immediately before the output. We write

u!l(b̃). P for (νb̃)u!l ⟨̃b⟩. P . Using structural congruence, the reduction rule [r-com] instantiates to:

[r-com-I] (νa)(a!lk (̃c). P | &i ∈I a?li (x̃i ).Qi ) → (νac̃)(P | Qk {c̃/x̃k }) (k ∈ I )

Internal processes will correspond to the standard (pre-)strategies in game semantics (§ 6.3).

Example 3.3. An example of well-typed internal process that will be useful to us later, is the

asynchronous copycat. Given a type T (without recursion here), one can define a process ⊢ [u =
v]T ▷ u : T ,v : T by induction on T (where [ũ = ṽ]T̃ means [u1 = v1]T 1 | · · · | [un = vn]T n ):

[u = v]
&i∈I ?li (S̃i ).Ti =

∑
i ∈I

u?li (ũi ).v!li (ṽi ). ([ũi = ṽi ]S̃i | [u = v]Ti )

[u = v]end = 0 [u = v]T = [v = u]T (for selection types)
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4 TYPES AND GAMES
In this section, we define and study the interpretation of types as the games of our model. In § 4.1,

we define event structures which are the basis for the notion of games introduced in [Rideau and

Winskel 2011]. In § 4.2, we define games and the interpretation of session types inside them.

4.1 Event Structures
Our model interprets processes and types as causal structures, which allows us to compute the

dependences between actions. Due to (internal and external) choice, the causal structure needs to

account for nondeterminism as well, representing the possible outcomes of these choices. This leads

us to Winskel’s event structures [Winskel 1986]. In this paper, we use prime event structures
with binary conflict, simply called event structures.

Definition 4.1. An event structure is a triple (E, ≤E , #E ) where (E, ≤E ) is a partial order and

#E ⊆ E × E is a binary relation which is symmetric and irreflexive, such that:

Finite causes For e ∈ E, the set [e] = {e ′ ∈ E, e ′ ≤ e} is finite.
Conflict inheritance If e#Ee

′
and e ≤ e0 then e0#Ee

′
.

The partial order indicates causal relationships between events: e ≤ e ′ when e ′ causally depends

on e . The conflict relation indicates which events are incompatible, i.e., cannot occur together in
the same execution. As a result, event structures take a global view of the program: the set E is the

set of all events of the program. This feature is crucial for the construction of the model and differs

from other main models of concurrency such as pomsets [Pratt 1984] and presheaves [Cattani and

Winskel 1997].

Notations. Given a subset X ⊆ E we write [X ] = {e ′ ∈ E | ∃e ∈ X , e ′ ≤ e}. A subset X is

downclosed when X = [X ]. We also write [X ) = [X ] \ X , and in particular, [e) = [e] \ {e}. If e < e ′

with no events in between, we write e _ e ′ and say that e ′ immediately depends on e . We say

that X is consistent if for all e, e ′ ∈ X , (e, e ′) < #E . The second axiom of event structures forces

conflict to propagate upwards: if e ≤ e ′, then e ′ inherits all the conflicts of e (and on top of those,

may have some more of its own). A conflict e#Ee
′
isminimal if there is no e0 ≤ e and e ′

0
≤ e ′ with

e0#Ee
′
0
. In this case we write e e ′. In diagrams, we only represent _ and as they are enough

to recover the event structure. A configuration (representing a partial execution, or a history) of

E is a consistent and downclosed subset x ⊆ E. The set of finite configurations is written C (E). A
configuration x makes a transition to y with event e , written x

e−−⊂y (or simply x−⊂y) when e < x
and y = x ∪ {e}.

Labelled event structures. When trying to model languages with event structures, each element

represents a computational event which may have some visible information (e.g., for an event

representing a channel output, the channel and message sent). This information is traditionally

represented by labels, gathered in a set Σ. In this setting, to account faithfully for divergences and

nondeterminism, we also keep track of internal choices. Processes are thus modelled as (partially)
Σ-labelled event structures, i.e., an event structure E along with a partial map lbl : E ⇀ Σ.
The interpretation of types will rely on standard operations on event structures. The prefixing

of a Σ-labelled event structure E by a label ℓ has for event {⊥} ∪E where ⊥ < E, for causal ordering
≤ℓ ·E=≤E ∪{⊥} × (ℓ · E), for conflict #ℓ ·E = #E , and for labelling the extension of lblE with ⊥ 7→ ℓ.
Prefixing by an internal action, ∗ · E, is defined similarly except that labelling is undefined on ⊥.

The parallel composition E0 ∥ E1 of two event structures E0 and E1, has for events the disjoint
union of E0 and E1, coded as {0} × E0 ∪ {1} × E1, and for the ordering and the conflict relation:

≤E0 ∥E1= {(i, e), (i, e ′) | e ≤Ei e
′} #E0 ∥E1 = {(i, e), (i, e ′) | e#Ei e ′}.
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Labelling functions on E and F induce naturally a labelling function on E ∥ F . The nondetermin-
istic sum E0 + E1 is defined as E0 ∥ E1 except that events of E and F are in conflict:

#E0+E1 = {(i, e), (j, e ′) | (i , j) ∨ (i = j ∧ e#Ei e
′)}

We extend this notation to arbitrary sums:

∑
i ∈I Ei .

Given an event structure E and x ∈ C (E), we define the remainder of E after x , written E/x as

follows. Its events are those e ∈ E \ x such that x ∪ [e] ∈ C (E), and the partial order and conflict

are inherited from E. Configurations of E/x are in bijection with extensions of x , that is with
configurations y ∈ C (E) such that x ⊆ y.

Confusion-free Event Structures. Event structures support a wide notion of nondeterminism. In our

source language, nondeterminism is localised at sums. This restricts the shape of nondeterminism

expressible in the language. An event structure E is confusion-free when (1) e Ee
′
implies

[e) = [e ′) and (2) if e E e
′

Ee
′′
then e = e ′′ or e Ee

′′
. As a result, the relation (=E ∪ E )

becomes an equivalence relation whose equivalence classes are called cells. Confusion-freeness is
preserved under the operations defined in the previous paragraph.

Event Structures and Recursion. To interpret recursive types, we use the standard denotational

technique of endowing event structures with an ω-CPO structure, representing types with open

variables as continuous maps, and then interpreting recursive types as least fixpoints of these maps.

We recall here the standard ω-CPO structure of event structures [Winskel 1982].

Definition 4.2. A Σ-labelled event structure E is included in Σ-labelled event structure F (written

E ↪→ F ), when (1) E ⊆ F ; (2) for e, e ′ ∈ E, e <E e ′ iff e <F e ′; (3) E is downclosed in F ; (4) for
e, e ′ ∈ E, e#Ee

′
iff e#F e

′
; and (5) for e ∈ E, lblE (e) = lblF (e).

We write ES(Σ) for event structures ordered by inclusion. This order has a minimal element, the

empty event structure ⊥. It is well-known that it is also an ω-CPO:

Lemma 4.3. ES(Σ) is an ω-CPO, meaning that every infinite ascending chain E0 ↪→ E1 ↪→ . . . has
a least upper bound written limEi .

Recall that a monotonic function f : A → B between ω-CPOS is continuous when it preserves

least upper bounds of ω-chains. Continuous maps in ω-CPOs always have a least fixpoint.

Lemma 4.4. If F : A → A is a continuous map between ω-CPOs, then it has a least fixpoint fix(F ).

Lemma 4.5. For any a ∈ Σ, the operations B 7→ a · B, (A,B) 7→ A ∥ B and (A,B) 7→ A + B are
continuous maps. Moreover, if f : A×B → B is continuous, then the operation a 7→ fix(b 7→ f (a,b))
defines a continuous map A → B.

4.2 Types as Games
We now recall games from [Castellan et al. 2018] and establish a formal link with session types.

Definition 4.6. Given a set Σ, a Σ-game is a Σ × {−,+}-labelled event structure A such that the

labelling function lblA is total, and if e Ae
′
, then π2(lbl(e)) = π2(lbl(e ′)).

A game A is a set of moves, representing the possible messages of a protocol. Each move e ∈ A
comes with a polarity polA(e) in {−,+} indicating if the message must be sent or received. Given a

Σ-game A, its dual A⊥
is obtained by reversing the polarity of moves. Games of [Castellan et al.

2018] are Σ-games for Σ = {∗}, but Σ will be useful to make the link with the syntax (messages,

names). The last condition ensures that nondeterministic choices belong to one participant.
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JendK(ρ) = ∅ JX K(ρ) = ρ(X ) J⊕i ∈I !li ⟨S̃i ⟩.TiK(ρ) =
∑

i ∈I !li ·
(
JS̃iK(ρ)⊥ ∥ JTiK(ρ)

)
JµX . PK(ρ) = fix(E 7→ JPK(ρ[X := E])) J&i ∈I ?li (S̃i ).TiK(ρ) =

∑
i ∈I ?li ·

(
JS̃iK(ρ) ∥ JTiK(ρ)

)
Fig. 1. Interpretation of session types into games

The causal order and conflict relation on a game encode the rules of the game and specify which

event can be played at a particular point of the protocol. In an event structure, two events e and
e ′ can relate in three ways: they can be causally related, in conflict, or concurrent. These three

possibilities make sense from a session type perspective:

• Causality represents the sequentiality constraint in a session type. For instance in !tt.?ff,
the message tt must be sent before ff can be received.

• Conflict represents when two messages cannot occur together in an execution. For instance

in !tt ⊕ !ff, a process must choose between sending tt or ff.
• Concurrency represents when two parts of the protocol can be performed independently. For

instance in ?start(!tt).!ff, the messages tt and ff can be sent in any order or in parallel.

Using this analogy, we devise an interpretation of session types inside games.

Interpreting session types. We define the interpretation of session types into event structures. The

events of the resulting event structure will correspond to actions allowed by the type, i.e., will
be labelled by extra information about the message sent and the channel on which it is sent. A

type will thus be interpreted as a L -game and a context as a (N × L )-game. To denote labels of

moves, we use process-like notations: !l for (l ,+), ?l for (l ,−) in L × {−,+}; and a!l for (a, l ,+),
a?l for (a, l ,−) in N × L × {−,+}.

Because of recursive types, we will also have to interpret open types. Given a type T , we write
fv(T ) for the free variables occurring in it. Write Games(L ) for the partial order of L -games and

inclusions, which is easily seen to be a sub-ω-CPO of ES(L × {−,+}). An open type T will be

interpreted by a continuous map Games(L )fv(T ) → Games(L ). Elements of Games(L )fv(T ) can
be seen as environments ρ mapping free variables of T to L -games. The inductive definition of

JT K is given in Figure 1. We write JT̃ K for (ρ 7→ JT 1K(ρ) ∥ . . . ∥ JT nK(ρ)). The dual operator in the

interpretation of selections is there to ensure that the interpretation commutes with duality:

Lemma 4.7. If T is a type, JT K(ρ) = (JT K(ρ))⊥ where ρ(X ) = ρ(X )⊥.

Given a L -game A, and a name a ∈ N , we write a : A for the (N × L )-game obtained from A
by relabelling: lbla:A(e) = (a, lblA(e)). Contexts are then simply interpreted as parallel composition

of their (relabelled) components: Ja1 : T1̧ . . . ,an : TnK = a1 : JT1K, . . . ,an : JTnK assuming

that all the types occurring in the context are closed. The game corresponding to the context

a : B,b : (?inl(!quit) & ?inr. !quit) is depicted on the left. The labelling need not be injective:

a!tt a!ff b?inl b?inr

b!quit b!quit

in the picture on the left there are two events with label

b!quit. This is not a problem since the corresponding

moves of the games are still distinct. We give a strategy

on this game in § 5.2.

We now study two properties of this interpretation: (1) which games are denoted by types, and

(2) which information is lost when interpreting a type.

4.2.1 Image of the Interpretation. Types and contexts, due to their inductive nature, give rise to

event structures which are forests. An event structure E is forest-like when for all e ∈ E, [e] is
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linearly ordered by ≤E . Moreover, the nondeterminism of JT K is due to branching/selection, so

JT K will be confusion-free. This is actually enough to characterise the image without recursion

(provided one restricts to finite event structures). However, the interpretation of session types does

not reach all the infinite forests in Games(L ) – only the regular ones. An event structure E is

regular [Thiagarajan 2002] when (1) the equivalence relation {(x ,y) ∈ C (E) | E/x � E/y} has a
finite number of equivalence classes and (2) any configuration can only have a finite number of

immediate extensions. When E is a forest, E/x can be seen as the sub-forest rooted at x . Regularity
ensures that E contains only a finite number of sub-forests. If ∆ is a typing environment, the game

J∆K can be regarded as a L -game by discarding the information on names.

Lemma 4.8. A L -game is isomorphic (as L -games) to a game of the form J∆K if and only if it is is
forest-like, regular and confusion-free.

4.2.2 An Equational Theory on Types. Finally, we look at the equational theory induced by the

model. As illustrated in § 2.1.2, the interpretation equates some types, e.g. ?(S).T and ?(T ).S whose

interpretation is ?() · (JSK ∥ JT K). We capture these equalities by the equivalence relation on session

types, generated by the following rules, plus closure under context:

&i ∈I ?li (S̃i ).Ti ≡ &i ∈I ?li (σ (S̃i ,Ti , end)).end ⊕i ∈I !li ⟨S̃i ⟩.Ti ≡ ⊕i ∈I !li ⟨σ (S̃i ,T i , end)⟩.end
where σ denotes any permutation of the sequence of types. By applying repeatedly these rules, a

number of end can be inserted or removed from the argument types. The equivalence ≡ states that

the order of argument types does not matter, and that argument types and continuation types can

be permuted. Remark that to move the continuation to the argument type in the case of an output,

it is necessary to take its dual. (This is related to the interpretation of types in games).

Proposition 4.9. For session types S,T without recursion, S ≡ T if and only if JSK � JT K.

5 COINCIDENT STRATEGIES
We now introduce our notion of strategies, the semantic counterpart of processes. As discussed

in § 3.5, strategies in the existing models of concurrency in game semantics only feature an

asynchronous copycat which makes difficult to give meaning to free name passing. In this section,

we generalise event structures to allow several moves to be played at the same time, creating
coincidences. In § 5.1, we introduce coincident event structures, obtained from event structures

by moving from a causal partial order to a causal preorder. In § 5.2, we generalise the strategies

of [Castellan et al. 2018] using these coincident event structures. Then, in § 5.3, we study the

interaction of coincident strategies, crucial to define the composition of strategies and interpret

the restriction operator. This composition is introduced in § 5.4, where we show that coincident

strategies naturally organise themselves in a (compact-closed) category. We conclude this section in

§ 5.5, by showing weak bisimulation and observational equivalence coincide on strategies applying

the technique in [Hennessy 2007]. This result will be used to prove that our model is intensionally

fully abstract in § 6.2.

5.1 Coincident Event Structures
Traditional prime event structures cannot express the fact that two events must occur at the same

time: concurrent (i.e., causally incomparable) events may occur at the same time, but may also

occur in a particular order. This is due to event structures being coincidence-free: for each pair of

event e, e ′ there exists a configuration x which separates them, i.e. contains one but not the other.
Each configuration x can thus be reached (possibly in many ways) by a series of atomic steps:

∅
e1−−⊂ {e1} . . .

en−−⊂ {e1, . . . , en} = x
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In prime event structures, this coincidence-freedom follows directly from the anti-symmetry of the

causal relation ≤E . By removing this axiom, coincident events become possible, as cycles for the

causal order.

Definition 5.1. A Σ-labelled coincident event structure is a triple (E, ≤E , #E , lblE : E ⇀ Σ)
where (E, ≤E ) is a preorder, #E ⊆ E × E is a symmetric irreflexive binary relation on E such that (1)
[e] is finite for e ∈ E and (2) if e#Ee ′ and e ≤ e0 then e0#Ee

′
.

We use similar notations as for event structures: C (E) denotes the set of finite, downclosed and

conflict-free subsets of E, called configurations. Minimal conflict is defined as before. We define

e _ e ′ in this new setting as e < e ′, ¬(e ′ < e) and there are no events in between e and e ′. An
event e ∈ E is said to be visible when lblE (e) is defined; invisible or internal otherwise. We write

E∗ for the set of internal events of E and Ev for the set of visible events of E, so that the set E splits

into E∗ ∪ Ev . This decomposition applies to configurations: if x ∈ C (E) we write x∗ (resp. xv ) for
the set of internal (resp. visible) events of x .
We write ≡ for the equivalence relation induced by the preorder ≤ (i.e. e ≡ e ′ when e ≤ e ′ and

e ′ ≤ e). The equivalence classes for ≡ are called coincidences. Two coincident e ≡ e ′ must occur

at the same time, as they cannot be separated by a configuration: e ∈ x iff e ′ ∈ x . We write E≡ for

the set of coincidences of E. We tend to use X ,Y , . . . for coincidences. A coincidence is trivial
when it is a singleton. Given any subset X ⊆ E, we write [X ] for the downclosure of X in E and

[X ) = [X ] \ X as for event structures. We say that x
X−−⊂y when y = x ∪ X , the union is disjoint,

and if x ⊆ z ⊆ y, then x = z or z = y (with x ,y, z ∈ C (E)). In that case, X must be a coincidence.

To illustrate coincidences, we give the definition of the (asynchronous) copycat CCA used in

traditional concurrent game semantics, and the coincident copycat, a new feature of our model.

Definition 5.2. Given a game A, we define the coincident event structures CCA (copycat) and CCCA
(coincident copycat) as follows. Their event set is A⊥ ∥ A, and their causal preorder:

≤CCA = (≤A⊥ ∥A ∪{((i,a), (1 − i,a)) | i ∈ {0, 1} ∧ polA⊥ ∥A(i,a) = −})∗

≤CCCA = (≤A⊥ ∥A ∪{((i,a), (1 − i,a)) | i ∈ {0, 1}})∗

Conflict is then inherited from the game: two events e, e ′ are in conflict in CCA (resp. CCCA) when

[{e, e ′}]CCA (resp. [{e, e ′}]CCCA ) is not a configuration of A⊥ ∥ A. The identity function turns CCCA
and CCA into (A⊥ ∥ A)-labelled event structures.

A⊥ A
a1 a1

a2 a2
CCA

a1 a1

a2 a2
CCCA

For the gameA = a1 _ a2 (two positive moves in sequence), CCA and CCCA
are depicted on the right. Coincidences are drawn with a straight line, rather

than as causal loops. Parallel composition and sums extend to coincident

event structures. Event structures come with a notion of map f : E ⇀
E ′

used to represent a (partial) simulation of E within E ′
. Maps allow to

characterise some operations on event structures with universal properties,

e.g., the synchronised product of event structures as a categorical product.

We extend the traditional maps of event structures to coincident event

structures as follows. For f : E ⇀ E ′
to be a valid simulation, when e ≡ e ′

in E and both f e and f e ′ are defined then f e and f e ′ must be coincident

or concurrent. This is justified by the fact that strategies will be maps of

coincident event structures, and the interaction of coincident strategies satisfies a universal property

relative to this class of maps (Theorem 5.8).

Definition 5.3. A map of coincident event structures f : E ⇀ E ′
is a partial function from E

to E ′
satisfying: (1) if x ∈ C (E) then f x ∈ C (E ′); (2) if e, e ′ ∈ x ∈ C (E) and f e = f e ′ then e = e ′;
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(3) if e ≡E e ′, and f e and f e ′ are both defined, then they are either concurrent or coincident; and

(4) for e ∈ E, lblE (e) and lblE′(f e) are both undefined, or both defined and equal.

The first two axioms are the same as for usual event structure maps. As a result, a map of

coincident event structures E ⇀ E ′
when E and E ′

are event structures is simply a map of event

structures as usually defined. A map f : E ⇀ E ′
is total when the underlying function is; an

isomorphism when it has an inverse д : E → E ′
: in this case we write E � E ′

.

The operation E/x can be easily generalised to coincident event structures, and is compatible

with the notion of maps:

Lemma 5.4. Let f : E ⇀ E ′ be a map of coincident event structures. For x ∈ C (E), the function
E/x ⇀ E ′/f x obtained by restricting f is well-defined and a map of coincident event structures.

5.2 Coincident Strategies
We introduce coincident strategies on games, generalising the strategies of [Castellan et al. 2018].

Consider a game A.

Definition 5.5. An A-labelled coincident event structure S is a coincident strategy on A when:

(1) Labelling is a map of coincident event structures S ⇀ A.
(2) If s Ss

′
, then s and s ′ are either both internal, or both visible. Moreover, if they are visible,

s is coincident to negative s0 and s
′
to negative s ′

0
such that lbl(s0) Albl(s ′0).

(3) If X ∈ S≡ is non-trivial, then X = {s, s ′} where lbl(s) and lbl(s ′) are both defined and of

distinct polarity in A.

The first condition ensures that strategies respect the rules ofA and play every move at most once

in a configuration. The second condition, secrecy, generalises the secrecy condition of [Castellan

et al. 2018], forcing conflict between visible events to arise from a negative conflict in the game. The

third condition severely restricts the shape of coincidences in S : the only non-trivial coincidences

allowed are those with two visible events of opposite polarities, as in coincident copycat. Note that

we do not impose any receptivity or courtesy conditions as in standard concurrent game semantics.

This implies that the asynchronous copycat will not be an identity, but the coincident copycat will.

The assertion that S is a coincident strategy on A will often be written S : A. We write CGS (A)
for the set of coincident strategies on a game A. An A-labelled coincident event structure where
the labelling function lblS : S ⇀ A is a map is called a coincident pre-strategy. Isomorphism of

labelled event structures gives a notion of isomorphism of strategies. Two strategies are isomorphic

when they only differ by the “codes” (in an informal sense) of the events, but not by the structure,

for instance S = {α } with lblS (α) = a and S ′ = {β} with lblS ′(β) = a must be identified even if

α , β . In particular, the categorical laws (cf. § 5.4) will only hold up to isomorphism.

Remember the context in the example of § 4, ∆ = a : B,b : (?inl(!quit)& ?inr. !quit). The pro-
cess P = (b?inl(x). a!tt. x !quit) & (b?inr. a!tt.b!quit) is interpreted as the strategy on the right.

b?inl b?inr a!tt a!ff b?inl b?inr

a!tt a!tt b!quit b!quit

b!quit b!quit

S
lblS

J∆K

In most cases, the information about the la-

belling to the game can be recovered so we

will omit it, only drawing the left picture,

as explained in § 2.1. Note that in this case,

the labelling is not injective since a!tt is

played twice, but the two events occur in

incompatible branches.

Weak bisimulation. As coincident strategies are event structures, we can equip them with a

labelled transition system using the remainder operation defined above. Note that if S : A and
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x ∈ C (S), it is easy to see that the map S/x ⇀ A/lblS (x) induced by Lemma 5.4 turns S/x into a

coincident strategy on A/lblS (x). Given a coincident pre-strategy S on A, we say that:

• S
τ−→ S ′ when there exists an internal minimal event s ∈ S such that S/[s] � S ′

• S
Y−→ S ′ when there exists a visible coincidence X containing minimal events such that

lblS (X ) = Y and S/X � S ′ (as strategies on A/Y ) (Y must be a set of minimal events of A).

Similarly, we can define weak transitions, in order to define weak bisimulation:

τ
=⇒ := ( τ−→)∗ Y

=⇒ := ( τ−→)∗ Y−→
Definition 5.6. A weak bisimulation is family of equivalence relations (RA)A∈Games where RA

relates coincident pre-strategies on A, such that

• If SRAT , and S
τ−→ S ′, then there exists a coincident strategy T ′

: A with T
τ
=⇒ T ′

and S ′RAT
′
;

• If SRAT and S
Y−→ S ′, then there exists T

Y
=⇒ T ′

and S ′RA/YT
′
.

The largest weak bisimulation is called weak bisimilarity and written ≈. Since isomorphism is

clearly a weak bisimulation, S � T implies S ≈ T . As in process calculi, weak bisimulation offers a

more concrete characterisation of observational equivalence (§ 5.5).

5.3 Interaction of Coincident Strategies
We have most of the ingredients to interpret the session π -calculus, except the restriction operator.

Syntactically, the composition of ⊢ P ▷ ∆,∆1 with ⊢ Q ▷ ∆,∆2 on the interface ∆ is the process

⊢ Q ⊚∆ P := (νã)(P | Q) ▷ ∆1,∆2 where ∆ = a1 : T1, . . . ,an : Tn .

In game semantics, composition is primitive, and implemented in two steps. First P and Q interact
over ∆, and then the actions on ∆ in the resulting process are hidden. In this section, we start

by defining the interaction of S : A ∥ B and S ′ : A⊥ ∥ C , resulting in a A ∥ B ∥ C-labelled event

structure S ∗A S ′. It is not a strategy, because of the disagreement over the polarity of moves of A.
We refer the reader to [Castellan et al. 2018, 2017] for detailed intuition about the behaviour of

interaction. For lack of space, we give here an axiomatic definition, phrased as a universal property.

The explicit definition can be found in Appendix B.1. Intuitively, the interaction S ∗ S ′ should only

exhibit behaviour that S and S ′ have. To formulate a common behaviour between S and S ′, i.e. a
behaviour that can be both simulated by S and S ′, we use maps of coincident event structures.

Definition 5.7. A common behaviour of S and S ′ is a triple (T ,α , β) of a (A ∥ B ∥ C)-labelled
coincident event structure T and two maps α : T ⇀ S and α : T ⇀ S ′ such that:

(1) If α and β are both defined on t ∈ T , then lbl(t) is defined.
(2) There are no coincident s1, . . . , sn ∈ T with α s1 ≡ αs2, βs2 ≡ βs3, αs3 ≡ αs4, . . . , βsn ≡ βs1.

A common behaviour is a coincident event structure that both S and S ′ can simulate. We also

add two conditions: the first one is taken from [Castellan et al. 2018], and amounts to saying that

two processes cannot synchronise on neutral events: the neutral events of S are invisible to S ′ and
vice versa. The second one prevents cycles between coincidences, which is necessary to prove

functoriality of the encoding of session π -calculus in § 7.

The interaction should not just be any common behaviour, but the largest: it should be able to

simulate any other common behaviour. A simulation from (T ,α , β) to (T ′,α ′, β ′) is a partial map

φ : T ⇀ T ′
with α ′ ◦ φ = α and β ′ ◦ φ = β .

Theorem 5.8. There exists a common behaviour of S and S ′ (S ∗A S ′,ΠS ,ΠS ′) which is the largest
common behaviour, i.e. for every other common behaviour (T ,α , β) there exists a unique simulation
(T ,α , β) → (S ∗A S ′,ΠS ,ΠS ′).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 27. Publication date: January 2019.



Two Sides of the Same Coin: Session Types and Game Semantics 27:17

5.4 The Category of Coincident Strategies
Using the interaction defined in the previous section, we now define the composition of strategies

and show it defines a compact-closed category of strategies. A coincident strategy from a game A
to a game B will be, as usual in game semantics, a strategy on A⊥ ∥ B. As a result, CCCA is a strategy

from A to A and will be the identity of our category. Composition will be obtained in a standard

manner by interaction plus hiding.

Given a coincident strategy S on A⊥ ∥ B and R on B⊥ ∥ C , we wish to build R ⊚ S to be a

coincident strategy on A⊥ ∥ C . Via the previous subsection, we can form their interaction S ∗B R,
written R ⊛B S , which is a (A⊥ ∥ B ∥ C)-labelled event structure. To obtain a strategy onA⊥ ∥ C , we
need to hide the behaviour on B. A solution would be to simply relabel R ∗B S to consider events on

B as being internal. On the one hand, most events on B do not represent anything meaningful about

the external behaviour of S andT interacting together. On the other hand, hiding everything forgets

nondeterministic branches without observable behaviour. In [Castellan et al. 2018], a compromise

is found by keeping only the essential events:

Definition 5.9. An event of a Σ-coincident event structure S is essential when it is visible; or

internal, and (1) there exists s ′ ∈ S such that s s ′ and (2) s is not coincident to a visible event.

The definition of essential events had to be updated to take into account coincidences. In particular,

internal events coincident to visible ones are never useful since the visible events remember the

conflict. This is essential to ensure that the composition will indeed be a coincident strategy,

as R ⊛B S is only a pre-strategy (it may contain arbitrary large coincidences involving events

synchronised on B). For S a Σ-labelled coincident event structure, we write E (S) for the coincident
event structure consisting in the essential events of S , and causality and conflict inherited from S .
As in [Castellan et al. 2018], hiding inessential events is sound up to weak bisimulation:

Lemma 5.10. For any coincident pre-strategy S on A, we have S ≈ E (S).
Let us defineT ⊚S as E (T ⊛B S) along with the labelling function E (T ⊛B S)⇀ A ∥ B ∥ C ⇀ A ∥ C

(note that, as far as labelling functions are concerned, polarity on the games does not matter). We

obtain the desired coincident strategy:

Lemma 5.11. T ⊚ S is a coincident strategy on A⊥ ∥ C .
Unlike in traditional asynchronous game semantics, the coincident copycat is an identity without

any further asynchrony assumption on strategies.

Proposition 5.12. For a coincident strategy S on A, CCCA ⊚ S � E (S).
Define a coincident strategy S to be essential when E (S) = S (i.e., all its events are essential).

From Proposition 5.12, it is easy to construct a compact-closed category:

Theorem 5.13. We obtain a compact-closed category CGS whose objects are games, and morphisms
are essential coincident strategies up to isomorphism.

To close the section, we remark that the strategies of [Castellan et al. 2018] arise as a special

case of coincident strategies, which are asynchronous. A coincidence-free strategy is a coincident

strategy S without non-trivial coincidences (i.e. S is an event structure).

Definition 5.14. A coincidence-free strategy S on A is asynchronous when:
Courtesy if s _ s ′ but lbl(s) and lbl(s ′) are incomparable, then s is negative and s ′ positive.

Receptivity If x ∈ C (S) is such that lbl(x) a−−⊂ inA, with a negative, then there exists a unique

s ∈ S such that lbl(s) = a and x
s−−⊂ .
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Theorem 5.15 ([Castellan et al. 2018]). Games and essential asynchronous strategies up to
isomorphism form a compact-closed category CGA.

The composition of asynchronous strategies defined in [Castellan et al. 2018] arises as a special

case of the composition defined here. However, the coincident copycat is obviously not asynchro-

nous, thus CGA is not a subcategory of CGS .

Prefixing and neutral events. We have seen that if we have S : A, then we can prefix both S and

A by a common event e (outside a) to obtain a game e · A and a strategy e · A. In particular, we

have the lifting strategy Le := (1, e) · CCCA playing on A⊥ ∥ (e · A). In the next section, we need to

prefix a strategy by an event, by composing with Le . However, Le ⊚ S is not isomorphic to e · S
in general. This is only true if S has no minimal internal events. Indeed such minimal events will

induce minimal internal events in Le ⊚ S . For this reason, we introduce the construction e _ S as

follows. The set of events and conflict is the same as e · S but the causality is given by the transitive

closure of ≤S ∪{e} × Sv (only visible events of S may depend immediately on e). We have:

Lemma 5.16. For S : A, we have Le ⊚ S � e _ S .

Recursion. As before, we can define inclusions between coincident event structures. A coincident

event structure E is included in a coincident event structure F when E ⊆ F , E is downclosed in F
and causality, and conflict from E and F coincide on events of E.

Lemma 5.17. CGS (A) along with inclusion forms an ω-CPO.

As before, the main operations used to build strategies are continuous, in particular composition

(remember that CGS (A,B) = CGS (A⊥ ∥ B)):

Lemma 5.18. For a coincident strategy S : A⊥ ∥ B, the operation R : B⊥ ∥ C 7→ R ⊚B S is a
continuous map CGS (B,C) → CGS (A,C).

5.5 Behavioural Equivalence
Before interpreting the session π -calculus, we study the behavioural theory of our model. We define

on strategies a semantic counterpart to the reduction-closed barbed congruence [Honda and Yoshida

1995; Milner and Sangiorgi 1992], and show it coincides with weak bisimulation. Since behavioural

equivalences depend on the possible set of contexts, we will consider a parameter M called a

submodel which is a subset M of games and for every A,B ∈ M a subset M (A,B) ⊆ CGS (A,B)
such that:

(1) ∅ ∈ M and M is stable under duality, parallel composition, prefix and remainder.

(2) If S ∈ M (A) and x ∈ C (S) contains only internal events, then S/x is in M (A).
(3) M is closed under composition.

(4) For every S ∈ M (A) and label e , e _ S ∈ M (e · A).
where M (A) stands for M (∅,A). We define the barbs of a coincident strategy S : A to be the set

barb(S) of positive e ∈ min(A) such that S
e
=⇒.

Definition 5.19. A family of equivalence relations (RA ⊆ M (A) × M (A))A∈M is a reduction-

closed M -congruence, when:

• If SRAS
′
then barb(S) = barb(S ′).

• If SRAR, and S
τ−→ S ′, then there exists R

τ
=⇒ R′

with S ′RAR
′
.

• If SRAS
′
then for all game B ∈ M and strategyU : A⊥ ∥ B ∈ M (A,B), (U ⊚ S)RB (U ⊚ S ′).

• If S ∈ M (A) and S ′ ∈ M (A) are such that (e _ S)Re ·A(e _ S ′), then SRAS
′
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 27. Publication date: January 2019.



Two Sides of the Same Coin: Session Types and Game Semantics 27:19

This definition is very similar to the definition in § 3.4, except for the last condition, which comes

for free if M contains sufficiently many strategies. We include it so that Lemma 5.24 holds in full

generality. Given a submodel M , we write ≃M for the largest M -congruence, and in particular ≃
will be a shorthand for ≃CGS . The larger the submodel is, the more fine-grained the equivalence

is, i.e. if M ⊆ M ′
, then S ≃M ′ S ′ implies S ≃M S ′ when S, S ′ belong to M . To relate weak

bisimulation and barbed congruence, we start by showing that weak bisimulation is a congruence.

Lemma 5.20. If S ≈ S ′ : A⊥ ∥ B, then for all R : B⊥ ∥ C , then R ⊚ S ≈ R ⊚ S ′.

We deduce that weak bisimulation is a reduction-closed congruence for any class of observers:

Lemma 5.21. For any submodel M of CGS and S,R ∈ M (A), if S ≈ T then S ≃M S ′.

5.5.1 Towards Full Abstraction. To show the converse, we apply a method based on the action

tester from [Hennessy 2007]. Actions on a game A are either minimal events of A or pairs {a−,b+}
of minimal events of A. We will write α , β, . . . for actions. Given a game A, and an action α , we will
write test(A,α) for the game (succ+ · A/α) ∥ fail+.

Definition 5.22. A submodel M defines an action α of A ∈ M if there exists a strategy U ∈
M (A, test(A,α)) such that:

• For all S, S ′ ∈ M (A) such that S
α−→ S ′, barb(U ⊚ S) = {succ+} andU ⊚ S τ

=⇒ (succ+ _ S ′).
• For S ∈ M (A), if barb(U ⊚ S) τ

=⇒ S0 with barb(U ⊚ S) = barb(S0) = {succ+} then S0
τ
=⇒

(succ+ _ S ′) with S
α
=⇒ S ′.

Definition 5.23. A submodel M is testing-closed if it defines all actions of games in M .

Lemma 5.24. If M is a testing-closed submodel, then for S,R ∈ M (A), we have: S ≈ R iff S ≃M T .

5.5.2 Definability of Actions. As a first application of Lemma 5.24, we show that weak bisimulation

and barbed congruence coincide in CGS by showing that CGS is testing-closed.

Consider a game A and an action α of A. We construct a coincident strategy on the game

A⊥ ∥ test(A,α), as follows:
• If α is a singleton e , we define Ue = (0, e) · (1, succ) · CCCA/e : A⊥ ∥ succ+ · (A/α) ⊆ A⊥ ∥ test(A,α)
• If α is a set {a,b}, we define

U{a,b } = (∗ · ((0,a) ∥ (0,b)) · (1, succ+) · CCCA/α )
+ (∗ · (0,a) · (0,b) · (1, fail+))
+ (∗ · (0,b) · (0,a) · (1, fail+))

The usage of fail is crucial for testing coincidences, since playing a and b in parallel does not rule

out strategies starting with a and b in parallel, rather than coincidentally. Hence we need the other

two branches that test a then b and b then a. If the strategy plays a and b concurrently rather than

coincidentally, then in the composition this matches with all branches, hence triggering the fail.

Theorem 5.25 (Semantic full abstraction – CGS ). The coincident strategy Uα defines the
action α for CGS . As a result, CGS is testing-closed, and S ≃ R iff S ≈ R for S,R ∈ CGS (A).
This result is fundamental to prove that our interpretation is fully-abstract. It also shows that

this semantic space is well-behaved from a concurrency theory point of view. Interestingly, we can

also apply this lemma to show that CGA is fully abstract:

Theorem 5.26 (Semantic full abstraction – CGA). The submodel CGA is testing-closed, hence
for any asynchronous strategies S,R : A, we have:

S ≃CGS R iff S ≈ R iff S ≃CGA R.
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J
∑

i ∈I PiK (γ ) =
∑

i ∈I ∗ · JPiK(γ ) JP | P ′K (γ ) = JPK(γ ) ∥ JP ′K(γ ) JX K (γ ) = γ (X )
J&i ∈I u?li (x̃i ).PiK (γ ) =

∑
i ∈I u?li · JPiK(γ )

Ju!lk ⟨ṽ⟩.PK (γ ) = u!lk · (JPK(γ ) ∥ CCCJT̃ K) where ṽ : T̃

JµX .PK (γ ) = fix(S 7→ JPK(γ [X := S])) J(νa:T )PK (γ ) = JPK(γ ) ⊚Ja:T ,a:T K CCCJT K J0K (γ ) = ∅

Fig. 2. Interpretation of session π -calculus as coincident strategies

The proof is by taking the same testing strategies and replacing occurrences of the coincident

copycat with the asynchronous copycat. This result shows that coincident strategies do not add

any observational power to asynchronous strategies. However, the submodel of coincidence-free

strategies is not testing-closed because there is no identity. This is related to Example E.1.

6 SESSION PROCESSES AND COINCIDENT STRATEGIES
In this section, we give an interpretation of session processes in terms of coincident strategies:

given a closed process ⊢ P ▷ ∆, we construct a strategy JPK on the game J∆K (§ 6.1). We then show

that this interpretation is fully abstract (§ 6.2), i.e. the interpretation preserves and reflects barbed

congruence. Our proof of full abstraction does not use the standard finite definability argument

as it is not enough to define finite tests in this nondeterministic setting, but instead relies on the

development of § 5.5, showing the action testers in § 5.5.2 are definable in the syntax. Nevertheless,

finite definability is an interesting result on its own and we conclude this section by showing a

result of finite definability for the internal session π -calculus (§ 6.3), hence showing that internal
processes form a programming language for coincidence-free strategies.

6.1 Interpreting Session π -Calculus
We now have all the ingredients to interpret the session π -calculus. Recursive processes are

interpreted similarly to recursive types, as fixpoints of continuous maps. We assume all types in

recursion contexts are closed. Given a context Γ = (X1:∆1), . . . , (Xn :∆n) we map it to the category

of embeddings JΓK = CGS (J∆1K) × . . . ×CGS (J∆nK). Then a judgement Γ ⊢ P ▷ ∆ is interpreted as a

continuous map JΓK → CGS (∆). The interpretation is defined on Figure 2. For branching processes,

the continuation is prefixed with an event encoding the message received. When interpreting

the selection, the synchronous forwarder links the subgame for u, and the subgames for ṽ . For
a nondeterministic sum, we prefix the strategies with internal events in order to remember the

branching point. A parallel composition is mapped to a parallel composition (with no interaction)

since a reduction only occurs under a name restriction. The interpretation of restriction is obtained

by composed by copycat: here, CCCJT K is a map from the empty game to (JT K⊥ ∥ JT K), composed

with the interpretation of P viewed as a coincident strategy from (JT K⊥ ∥ JT K) to J∆K.

Lemma 6.1. Consider Γ ⊢ P ,Q ▷ ∆. If P ≡ Q then JPK(γ ) � JQK(γ ) for γ ∈ JΓK.

We notice that composition of processes, and asynchronous forwarders are definable.

Lemma 6.2. Consider a context ∆ = a1 : A1, . . . ,an : An , and ⊢ P ▷∆,∆P and ⊢ Q ▷∆,∆Q . We have

JQK ⊚J∆K JPK � JQ ⊚∆ PK (= J(νã)(P | Q)K).

Moreover, for a type T without recursion, we have J[u = v]T K = CCJT K.
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6.2 Full Abstraction
In this subsection, we prove that our interpretation is fully abstract. First we state a correspondence

between the operational semantics and the model:

Lemma 6.3 (Soundness and adeqacy). Let ⊢ P ▷ ∆ be a well-typed process. Then we have: (1) if
P →∗ Q , then JPK

τ
=⇒ JQK; and (2) if JPK

τ
=⇒ S then S = JQK with P →∗ Q .

This result induces a correspondence at the level of barbs. However, in the syntax, recall that a

process P that contains both a name and its coname does not have visible barbs on these names,

yet in the current semantics, actions on these names are visible. To solve this mismatch, from JPK,
we define another interpretation (|P |) which hides actions on names that should not be observable.

Given ⊢ P ▷ ∆, consider the decomposition of ∆ of the form ∆0,∆0,∆1 where ∆1 does not contain a

name and its coname. We write (|P |) = JPK ⊚J∆0,∆0K
CCJ∆0K, which is a strategy on J∆1K.

Lemma 6.4. Let ⊢ P ▷ ∆. Then P ⇓a if and only if (|P |) a!l
==⇒ for some l ∈ L .

To derive full abstraction of the model, we reuse Lemma 5.24. DefineCπ , the submodel comprising

of the games of the form J∆K, and given two games J∆K, J∆′K, Cπ (J∆K, J∆′K) comprises all (|P |)when
⊢ P ▷ ∆,∆′

. It is a routine verification to show that Cπ is indeed a submodel. By finding process

equivalents of the strategies used in the previous section, we obtain:

Theorem 6.5. Cπ is testing-closed. As a result, for ⊢ P ,Q ▷ ∆, P ≃ Q if and only if (|P |) ≃ (|Q |).
Via this result, we can show that the interpretation of a process is asynchronous if and only if it

is invariant under composition with the asynchronous forwarder.

Lemma 6.6. Consider a context ∆ = a1 : A1, . . . ,an : An which does not contain a name and its
coname. For ⊢ P ▷ ∆, JPK is an asynchronous strategy if and only if (νã)(P | [̃a = b̃]) ≃ P{b̃/ã}.
In this case, we say that P is latency-independent.

6.3 Finite Definability and Internal Processes
One of the goals of the correspondence between session types and game semantics is to be able to

use session processes as a syntax for strategies. However not all coincident strategies are definable

by a session process due to arbitrary coincidences. In this section, we turn our attention to the

coincidence-free fragment of the model, corresponding to pre-strategies of [Castellan et al. 2018].

As for types, we now try to understand which conditions on coincident strategies are necessary

for the converse to hold. A confusion-free coincidence-free strategy S on a game A ismatching-
exhaustive when if c is a visible cell of S , then lbl(c) is a cell of A. This ensures that a strategy does

not forget branches in an external choice. A coincidence-free strategy S : A is internal when S is

confusion-free and matching-exhaustive.

Lemma 6.7. Let ⊢ P ▷ ∆ be an internal session process. Then JPK is an internal strategy.

Moreover, for internal strategies which are forests it is easy to define them by induction:

Lemma 6.8. Let S : J∆K be a finite internal strategy such that S is a forest. Then there exists an
internal process P such that JPK = S .

The main difficulty is to deal with joins. We need to define a strategy whose causal pattern can

be arbitrary. First, let us define the causal complexity of a strategy. Given s ∈ S , we write pred(s) for
the set of its immediate predecessors, i.e., the set of events s ′ ∈ S such that s ′ _ s . If S is a forest,

then pred(s) is at most one for all s ∈ S . Then, we define the causal complexity of an event s ∈ S :
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(1) cc(s) = 0 if pred(s) has cardinality ≤ 1; (2) else cc(s) = ∑
s ′_s |[s ′]|. We then define the causal

complexity cc(S) of a finite internal strategy S : A to be the sum of the causal complexity of all its

events. Note that cc(S) = 0 if and only if S is forest-like. We show how to inductively decrease the

causal complexity of a strategy. Consider a join in S : A as in the left of the diagram below. We then

rewrite this strategy into S ′, which now plays on a larger arena Ja : ⊥,b : 1K⊥ ∥ A. Here S ′ has a
lower causal complexity than S but not s1 ≤ s . This dependence can be recovered by composition

with asynchronous copycat, as illustrated below:

s1 s2

s

S

s1 s2

a!() b?()

s

S ′

s1 s2

a!() b?()

s
S ′ ⊛ CC1

s1 s2

s

S ⊚ CC1

Lemma 6.9. Let S : J∆K be an internal strategy. If S has causal complexity > 0, then there exists
S ′ : Ja : ⊥,b : 1K⊥ ∥ A such that cc(S ′) < cc(S) and S � S ′ ⊚Ja:⊥,b :1K CCJ1K.

Since asynchronous copycat and composition are definable, we obtain by induction:

Theorem 6.10. If S : J∆K is finite internal, there exists an internal process P with JPK � S .

Since asynchronous strategies are automatically internal, we conclude that finite asynchronous

strategies are all definable by processes. Hence there is a two-way correspondence between latency-

independent processes and asynchronous strategies.

On the one hand, it is not clear the class of infinite event structures that internal processes (with

recursion) define: it is more than regular event structures. On the other, augmenting the syntax

with infinitary parallel composition and restriction is enough to define all infinite event structures.

7 FROM COINCIDENT STRATEGIES TO ASYNCHRONOUS STRATEGIES
This section presents an encoding of coincident strategies into asynchronous strategies, which

explains how to represent synchronous strategies as particular asynchronous strategies. We encode

synchronous actions as a pair of asynchronous actions of dual polarities, a request, followed by an

acknowledgement. As an application of our correspondence, this encoding can be lifted at the level

of types and processes.

Syntactically, a type T (resp. a game A) is unfolded into a protocol ↑ T (resp. a game ↑ A)
where every action is duplicated into a request and an acknowledgement. For instance, ↑B =
(!tt. ?ack) ⊕ (!ff. ?ack).
Processes and strategies on T or A are lifted on ↑ T or ↑ A. For instance, consider the process

P = a!tt.b!ff on the context ∆ = a : B,b : B. It is latency-dependent due to the direct syntactic

dependence between two positive actions on unrelated channels, hence requires to know when

its send has been received to be able to continue. It can be unfolded into a latency-independent

process respecting the unfolded types:

⊢ P ′
:= a!tt. a?ack.b!ff.b?ack ▷ a : ↑B,b : ↑B,

P ′
need not to knowwhen its outputs are received since it can simply wait for the acknowledgement.

We first start by explaining how protocols are unfolded. Then § 7.1 defines the encoding of

strategies, and § 7.2 characterises the image of the encoding. Finally, we study properties of the

encoding in § 7.3 and show how it can be used to build a syntactic translation of (finite) processes.

Definition 7.1. Let A be a L -game. We define ↑A as follows:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 27. Publication date: January 2019.



Two Sides of the Same Coin: Session Types and Game Semantics 27:23

Events A × {r, a}
Causality generated by (e, r) _ (e, a) and (e, a) _ (e ′, r) when e _A e ′.
Conflict (e,α)#(e ′, β) when e#e ′.
Labelling (to L × {−,+}): lbl(e, r) = lbl(e) and lbl(e, a) = (ack,−polA(e)).
The translation preserves most properties and constructions on games. Moreover, through the

results of § 4, this induces a translation on session typesT 7→ ↑T that can be described syntactically:

↑end = end ↑t = t ↑(µt.T ) = µt. ↑T

↑&i ∈I ?li (S̃i ).Ti = &i ∈I ?li . !ack⟨↑̃Si ⟩. ↑Ti ↑ ⊕i ∈I !li ⟨S̃i ⟩.Ti = ⊕i ∈I !li . ?ack(↑̃Si ). ↑Ti

7.1 Encoding of Strategies
We define an encoding from a coincident strategy S on A into an asynchronous strategy ↑S on ↑A.
Contrary to the translation of games, which can be easily carried at the syntax level for types, this

translation relies on the causal structure offered by the model. The difficulty of this encoding is

to translate causal patterns which are not necessarily courteous into courteous ones (i.e. ⊖_ ⊕).
Before formally defining the encoding, we list the possible causal patterns in coincident strategies

and what their encoding will be below.

(1) (2) (3) (4) (5)

S : a!tt _ b!ff a!tt _ b?ff a?tt _ b?ff a?tt _ b!ff a?tt – b!ff

↑S :
a!tt b!ff

a?ack b?ack

a!tt b?ff

a?ack b!ack

a?tt b?ff

a!ack b!ack

a?tt b!ff

a!ack b?ack

a?tt b!ff

a!ack b?ack

In (1), there is an immediate causality between two positive actions which is translated to a

strategy below. (4) is a translation of a courteous causality, while (5) is of a coincidence. They only

differ in how the acknowledgement is handled: when translating a coincidence a?tt – b!ff, the
acknowledgement of a?tt depends on the acknowledgement of b!ff, which is not the case for the

translation of a?tt _ b!ff. This translation was guided by a principle: there should be a bijection

between downclosed subsets of the source partial order, and complete downclosed subsets of the

target partial order, i.e. those closed under acknowledgements.

Defining the encoding in one step would technically involved, so we proceed in two steps.

First, given a coincident strategy S on A, we build a coincidence-free strategy S on the game ↑A.
Remember that S splits in S = S∗ ∪ Sv where Sv is the set of visible events and S∗ the set of internal
events. Consider the set S := S∗ × {∗} ∪ Sv × {r, a}, along with labelling function lblS : S ⇀ ↑A,
mapping (s,α) to (lblS (s),α) when defined; and undefined otherwise. A subset X ⊆ S is consistent

when its first projection π1(X ) is consistent in S . The preorder ≤S is generated by the transitive

and reflexive closure of:

(s, r) ≺ (s, a) for s ∈ S
(s, r) ≺ (t , r), (t , a) ≺ (s, a) when s− ≡ t+

(s, a) ≺ (t , r) when s _ t , s, t ∈ Sv

(s, a) ≺ (t , ∗) when s _ t and s ∈ Sv , t ∈ S∗
(s, ∗) ≺ (t , r) when s _ t and s ∈ S∗, t ∈ Sv
(s, ∗) ≺ (t , ∗) when s _ t and s, t ∈ S∗

The resulting preorder still contains non-courteous causal links, but it is antisymmetric:

Lemma 7.2. S is a coincidence-free strategy on ↑A.
To turn S into an asynchronous strategy, we borrow this result from [Castellan et al. 2018]:

Lemma 7.3 ([Castellan et al. 2018]). If S coincidence-free, then cc A ⊚A S is asynchronous.

As a result, we define ↑S as the asynchronous strategy cc ↑A ⊚↑A S .
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Example 7.4. Consider the process P = (νd)(a!tt.d! | b!ff.d?. c?). Its interpretation is on the left

(S). Via S , its encoding is given on the right (↑S):
a!tt b!ff

c?()

S

a!tt b!ff

a?ack c?() b?ack

c!ack

S

a!tt c?() b!ff

a?ack b?ack

c!ack
↑S

The strategy on the right is the interpretation of (νdd ′)(a!tt. a?ack.d! | b!ff.b?ack.d ′
! |

c?.d?.d ′
?. c!ack). It illustrates that the translation is not inductive on the syntax of processes

but relies on the causal structure.

Because composing with copycat removes all non courteous causal links, ↑S � ↑T does not imply

S � T . However, by adding redundancy to the step from S to S , the whole process is injective.
Moreover, the encoding also preserves the categorical structure:

Theorem 7.5. The operation ↑ defines a faithful functor CGS → CGA, i.e.,

(1) ↑CCCA � CC↑A (2) ↑(R ⊚ S) � ↑R ⊚ ↑S (3) ↑R � ↑S ⇒ S � R

CGS is thus isomorphic to a subcategory of CGA. We now characterise this subcategory.

7.2 Acknowledging Strategies
Consider an asynchronous strategy S : ↑A. Define ↓S to be the set of s ∈ S which are either internal

events, or acknowledged requests, i.e., requests such that there exists s ′ ∈ S with σ s _ σ s ′. Define
the relation ⪯S on ↓S as follows (reflexive but not transitive in general):

s ⪯S s ′ :=

{
s ≤S s ′ s ′ neutral

s ≤S s ′
0

s ′
0
an acknowledgement of s ′

Lemma 7.6. Let σ : S ⇀ A be a coincident strategy. There exists a function φ : ↓↑S → S such that
s ⪯S s ′ if and only if φ s ≤ φ s ′.

Definition 7.7. An asynchronous strategy σ : S ⇀ ↑A is well-acknowledging when

(1) X ∈ ConS iff [X \ {s ∈ X | σ s defined and an acknowledgement}] ∈ ConS .

(2) The relation ⪯S is a preorder on ↓S (i.e. it is transitive).
(3) If s ⪯S s ′ and s ′ ⪯S s , then s and s ′ have distinct polarities.
(4) If s is a non-maximal request, then it is acknowledged.

(5) There is no internal s0 with s < s0 < s ′ when s is a request and σ s _ σ s ′.

Lemma 7.8. For any σ : S ⇀ A, the strategy ↑σ is well-acknowledging.

Given S an asynchronous strategy on ↑A, we write ↓S for the triple (↓S, ⪯S ,ConS ∩P(↓S)), with
labelling mapping s ∈ ↓S to a whenever lblS (s) = (a, a).

Proposition 7.9. If S is well-acknowledging, then ↓S is a coincident strategy. Moreover ↑↓S � S .

Since the construction ↑· is easily seen to be injective on games, we obtain:

Theorem 7.10. The category CGS is isomorphic to the subcategory of CGA whose objects are games
of the form ↑A and morphisms well-acknowledging (asynchronous) strategies.
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7.3 Properties of the Encoding
We show that our encoding is sound: it reflects weak bisimulation (hence barbed congruence)

Lemma 7.11. For S,R : A, if ↑S ≈ ↑R then S ≈ R.

However, as the completeness direction of the encoding from synchrony into asynchrony fails in

the π -calculus [Yoshida 1996], the converse direction does not hold(cf. Example E.1 in Appendix).

The semantic encoding can be lifted to finite processes via Theorem 6.10.

Definition 7.12. Given a finite process ⊢ P ▷ ∆, define ↑P to be a process defining the strategy

↑JPK on the game ↑J∆K � J↑∆K via Theorem 6.10.

By construction, ⊢ ↑P ▷ ↑∆. Using the full abstraction result, we deduce immediately that the

encoding is sound:

Lemma 7.13. For finite ⊢ P ,Q ▷ ∆, if ↑P ≃ ↑Q then P ≃ Q .

This allows any process which expects a synchronous network to be lifted to a process that

has the same behaviour on a network where synchronising actions are not available. Unlike the

traditional untyped encoding of the synchronous π -calculus into the asynchronous π -calculus, this
encoding does not rely on name-passing but simply on passing acknowledgements.

8 RELATEDWORK AND CONCLUSION
Related work. Recently, Disney and Flanagan [2015] applied game semantics to prove the sound-

ness of typing system for extensions of the λ-calculus by translating them as strategies represented

by processes. Honda and Yoshida [1999] recast the traditional encoding of the call-by-value λ-
calculus into the π -calculus by Milner [1992] into a game semantics model for call-by-value PCF.

Our paper applies the proof technique from the π -calculus (definability of action testers in [Hen-

nessy 2007]) to game semantics to obtain full abstraction where the standard finite definability

(which works only for may equivalence) is insufficient due to reduction-closedness of the barbed

congruence.

On concurrent game semantics, Laird [2005] was the first to devise a model of the asynchronous

π -calculus. The nondeterminism of the model being angelic, the model is only fully abstract for

may equivalence. The model rests on plays as traces and thus is unable to account precisely for

causality between actions. The departure from trace-based games model to truly concurrent ones

was initiated by [Abramsky and Melliès 1999] using closure operator to represent deterministic

computation. The first model using explicitly causal structures is due to [Melliès and Mimram

2007], which introduces the asynchronous copycat, as well as the local condition, courtesy, ensuring
that it is an identity. This causal structure is used to prove positionality of innocent strategies and

deduce a fully complete model of linear logic [Melliès 2005]. Eberhart et al. [2013] have a model of

the synchronous π -calculus using similar ideas, fully abstract for fair convergence. However, their

model does not support any notion of hiding, which makes the representation of programs very

large; and they do not study the link between types and games. The first model of a π -calculus
dialect based on this causal approach in game semantics is due to Sakayori and Tsukada [2017]

using pomsets to devise a model of the asynchronous π -calculus, fully abstract for may. More

recently, concurrent game semantics has been applied to provide a semantic proof of soundness for

concurrent separation logic [Melliès and Stefanesco 2018].

The idea of representing coincidences as causal loops is first presented in [Ghica and Menaa

2011], which outlines how to build a sequential and deterministic model in game semantics of

synchronous computation. It is also proposed in [Melliès 2019], to which our model is related. Since

the domain of configurations of a coincident event structure can be seen as a category of positions,
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our games and strategies arise as a special case of the abstract setting put forward in [Melliès

2019]. With this embedding, our synchronous copycats coincide, but it is not entirely clear to us

what the status of composition is. Domains of configuration are not composed using pullbacks,

but as a subjobject of the pullback where deadlocks have been removed. It would be interesting to

investigate whether our category can be recovered as a subcategory of Melliès’, maybe by changing

the base category of polarities, which is the main parameter of the construction of [Melliès 2019].

The line of work [Crafa et al. 2007; Cristescu et al. 2015] also models processes by event structures,

however in these models, labels carry information about the names that are passed or received,

unlike in ours. This representation of actions makes the models combinatorially more involved and

does not offer fully abstract or definability results.

Our definability result is related to [van Glabbeek and Vaandrager 2003], tackling the problem of

definability of event structures by expressions of CCS or CSP. We define event structures using a

name-passing calculi, the internal session π -calculus, rather than a value-passing one, which relies

on the game structure.

The analysis of synchrony and asynchrony at the level of strategies is reminiscent to Selinger

[Selinger 1997], where asynchrony properties on labelled transition systems are defined in terms of

equations satisfied by the composition of the transition system with specific agents, representing

buffers or queues, just like we do with asynchronous copycat. Our setting using games allows for

more general LTSs than those simply generated by sets of input and output labels. We leave for

future work understanding the exact relationship between the two frameworks.

Implementation. We have implemented a prototype for the model, available online at http:

//sessiontypesandgames.github.io/. The implementation is mainly an illustration of the model, and

intended to help readers to familiarise themselves with the model. It computes the interpretation

of a (recursion-free) process, and draws the coincident event structure. Coincident event structures

are not represented using a graph representation as drawn in the paper, but as a labelled transition

system enhanced with causal information. This allows us to represent infinite event structures

lazily (even though we do not take advantage of this in the implementation). The transition system

can then be explored (with possibly a bound) to recover the event structure, as a graph.

Because of this representation, the implementation does actually list the traces (where each

event of the trace lists the events depended on causally), which only differ due to nondeterministic

choices, and not due to the choice of the scheduler. For this reason, our implementation directly
gives the minimal set of traces of a process, and as such is related to partial order reduction tools

which approximate this minimal set (in more general contexts).

Future work. We believe that this model can be applied to other areas related to synchronous

computation: for instance to the geometry of synthesis and hardware circuits [Ghica and Menaa

2011], or the Applied π -calculus [Abadi et al. 2017] where a truly concurrent model could help

with checking cryptographic properties related to trace-equivalence [Baelde et al. 2015].

We would also like to extend the correspondence, to support: (1) races between different actions,

in order to represent nonlinear channels or shared memory and (2) nonlinear “symmetric” actions

(corresponding to unrestricted channels in the π -calculus and copy indices in strategies).

From the session types perspective, a link with causal game semantics could offer a causal

account of asynchronous buffered session semantics [Gay and Vasconcelos 2010] and multiparty

session types [Honda et al. 2008]; a correspondence with a relational model of a linear logic based

session calculus [Atkey 2017]; a semantic proof of deadlock-freedom; a generalisation of binary

session types to types that do not denote forest-like games.
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A PROOFS OF SECTION 4
A.1 Link between games and types
A.1.1 Definability of games. Define the relation ≤ on type as the transitive and reflexive closure

of the following rules:

• ⊕i ∈I !li ⟨T̃i ⟩. S ≤ S and ⊕i ∈I !li ⟨T̃i ⟩. S ≤ T j
i

• &i ∈I ?li (T̃i ). S ≤ S and &i ∈I ?li (T̃i ). S ≤ T j
i

• If T [µt.T /t] ≤ S then µt.T ≤ S .

Lemma A.1. If T is a type, there is a finite number of type T ′ such that T ≤ T ′.

Proof. We can only unfold the rules a finite number of time and the syntactic tree is finitely

branching. □

Lemma A.2. Let T be a closed type and x ∈ C (JT K). Then there exists a subtype T ′ of T such that
JT ′K � JT K/x .

Proof. Easy induction. □

Lemma A.3. If ∆ is a typing environment, J∆K is confusion-free, regular, and forest-like.

Proof. That J∆K is confusion-free and forest-like is trivial. We show that J∆K is regular. To do

so it is enough to show that given a closed type T , JT K is regular. If there were a infinite number of

configurations of JT K with non-isomorphic futures, then by Lemma A.1, there would be an infinite

number of subtype T ′
of T contradicting Lemma A.2. □

To prove the converse, we will have to reconstruct the recursive variables, exploiting the fact that

regular event structures are cyclic. Let A be a forest-like, confusion-free and regular L -game. We

write α , β , . . . for cells of A. Note that by regularity they are all finite. They are naturally ordered:

α ≤ β when there exists e ∈ α and e ′ ∈ β such that e ≤ e ′. Moreover if α is a cell of A, we write
A/α for A/[e) for any e ∈ α . Let us consider a set C of cells of A such that:

(1) C is down-closed, if α ≤ β ∈ C then α ∈ C .
(2) C is exhaustive: if α is a cell of A, there exists a cell nf(α) ≤ α in C .

By regularity of A, there exists a finite such C . Given a cell α of A, we write [α) for the set of

cells strictly below α and [α] for the cells below α so that [α] = {α } ∪ [α). In the following, we

will consider the set Games(L )[α ) for α ∈ C , that we see as functions ρ : [α) → Games(L ). By
induction on α , we define:

Fα :Games(L )[α ) → Games(L )

ρ 7→ fix(B 7→
∑
ei ∈α

msg(ei )pol(ei ) · (∥ei_β ξα,nfβ ))

ξα,γ =


ρ(γ ) if γ < α

B if γ = α

Fγ (ρ ∪ {α 7→ B}) if α < γ

This inductive definition is well-founded since Fα only refers to Fβ for α < β with β ∈ C , and C is

finite. The parallel composition ranges over cells β which are successors to ei (That is, β such that

forall e ′ ∈ β , ei _ e ′). By regularity, there is a finite number of such β . Finally, the last clause of
ξα,γ relies on the fact that if ei _ β then [β) = [α) ∪ {α }. Let us write ρα : β ∈ [α) 7→ A/β .

Lemma A.4. For α ∈ C , we have: Fα (ρα ) = A/α .
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Proof. First, let us notice that for any cell α , we have, because A is a forest:

(∗) A/α �
∑
ei ∈α

msg(ei )pol(ei ) · (∥ei_β A/β).

We proceed in two steps:

(1) We construct a family of embedding (ια : Fα (ρα ) → A/α) by induction on α ∈ C
(2) By induction on n ∈ N, we show that for every element α ∈ C and every element e ∈ A/α of

depth n, e is in the image of ια .

From there we conclude that ια is surjective, hence an iso and we conclude.

(1) We proceed by induction on α ∈ C . Let us define Gα : Games(L )[α ] → Games(L ) as
follows:

Gα (ρ) =
∑
ei ∈α

msg(ei )pol(ei )· ∥ei_β

({
ρ(β) if β ≤ α

Fβ (ρ) otherwise

)
so that Fα (ρ) = fix(B 7→ Gα (ρ[α := B])). By induction hypothesis, using (∗) we have

Gα (ρα [α := A/α]) � A/α . This means that A/α is a fixpoint of B 7→ Gα (ρα [α := B]), hence
there is an embedding ια : Fα (ρα ) ↪→ A/α .

(2) Let n ∈ N and consider e ∈ A/α of depth n. There are two cases: if e ∈ α , then e is one of
the ei and is clearly in the domain of ια . Otherwise, there exists ei ∈ α such that ei < e . As a
result, there exists a cell β such that e ∈ A/β and ei _ β . Clearly, e is going to be of depth
n − 1 in A/β . Since A/β � A/nfβ , there exists e ′ ∈ A/nfβ corresponding to e . It is also of

depth n − 1, hence by induction it is in the image of ιnfβ . From there, it is easy to see that e is
in the image of ια .

□

Lemma 4.8. A L -game is isomorphic (as L -games) to a game of the form J∆K if and only if it is is
forest-like, regular and confusion-free.

Proof. Consider a gameA satisfying the assumption. We use the notation of the previous lemma.

Let us fix a family of type variable (Xβ )β ∈C . For α ∈ C , we define

Tα = µXα .
∑
ei ∈α

!msg(ei )⟨ξα,nfβ i
1

, . . . , ξα,nfβ in ⟩. ξα,nfβ0 (α positive cell)

Tα = µXα .
∑
ei ∈α

?msg(ei )(ξα,nfβ i
1

, . . . , ξα,nfβ in ). ξα,nfβ0 (α negative cell)

where β i
0
, . . . , β ini are the cells succeeding to ei , and

ξα,β =

{
Xβ if β ≤ α

Tβ otherwise

By induction, we see that fv(Tα ) ⊆ {Xβ | β < α }. Moreover, it is easy to derive that

JTα K(ρ) � Fα (β 7→ ρ(Xβ )).

Then if α is a minimal cell of A, Tα is a closed type and JTα K � A/α by Lemma A.4. As a result,

writing α1, . . . ,αn , for the minimal cells, we have Ju1 : Tα1
, . . . ,un : Tαn K = A as A is a forest. □
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A.1.2 Equational theory on types.

Proposition 4.9. For session types S,T without recursion, S ≡ T if and only if JSK � JT K.

Proof. By induction on ≡, it is immediate to derive that T ≡ T ′
implies JT K � JT ′K.

Conversely assume that there is an isomorphism φ : JT K � JT ′K. Because ≡ allows us to pull

the continuation inside the argument types, we can assume up to ≡ that the subtypes in T have

no continuation. Secondly, the rules in ≡ allow us to remove the end types in argument types, so

we will assume that the arguments types appearing are never empty. Write α = {e1, . . . , en} for
the initial cell of JT K. For 1 ≤ i ≤ n, write (β ji )j the successor cells of ei . Assume for instance that

α is a positive cell (the negative case is simlar). Then, we must have T = ⊕1≤i≤nli ⟨T̃i ⟩. Since φ
preserves polarities and messages, we must have T ′ = ⊕1≤i≤nli ⟨T̃ ′

i ⟩. Moreover, φ must restrict to

an iso JT̃iK⊥ � JT̃ ′
i K

⊥
for all i . From there, we deduce easily a permutation σ on {1, . . . ,ni } such

that JT j
i K � JT ′σ (j)

i K which by induction implies T j
i ≡ T ′σ (j)

σ (i) . Then we conclude by the rule for ⊕ in

≡. □

B PROOFS OF SECTION 5
Lemma 5.4. Let f : E ⇀ E ′ be a map of coincident event structures. For x ∈ C (E), the function

E/x ⇀ E ′/f x obtained by restricting f is well-defined and a map of coincident event structures.

Proof. We first show it is well-defined. If e ∈ E/x , then f x ∪ [f e] ⊆ f x ∪ f [e] = f (x ∪ [e]) ∈
C (F ). Moreover, since e is consistent with x , f e cannot be in f x by local injectivity. The other

conditions are inherited from f . □

Lemma B.1. Let E, F be coincident event structures and φ : (C (E), ⊆) � (C (F ), ⊆) be an order
isomorphism, which preserves cardinality of configurations. Then there exists an isomorphism f : E � F
such that for all x ∈ C (E), we have f x = φ x .
Moreover for any partial maps д : E ⇀ G and h : F ⇀ G, such that h(φ(x)) = д(x) for x ∈ C (E),

then f can be chosen so that h(f (e)) = д(e) for e ∈ E.

Proof. We construct f (e) by induction on e . Write X = {e1, . . . , en} the coincidence of e inside
[e]. Remember that [e) = [e] \ X . Assume f is defined on [e).
Since φ is an isomorphism we have that φ([e)) Y−−⊂φ([e]) for some set Y . Because φ preserves

cardinality, X and Y must be in bijection. If д and h are provided, pick any bijection α : X ≃ Y that

respects д and h (using local injectivity); otherwise pick any bijection.

Now, augment f with the mappings in α .
This concludes the construction of f . Now we show that f x = φ x for all x ∈ C (E) from which

the result of the lemma follows. We prove this by induction on x ; the base case being trivial.

If x
X−−⊂ x ′

, then we can consider the extension [X )−⊂[X ]. As φ preserves extension squares (it is

an isomorphism), φ x ′ = φ x ∪ (φ [X ] \φ [X )). By induction, we have φ x = f x , and φ [X ] \φ [X ) =
f [X ) by construction of f . □

Lemma B.2. Let S,T : A be coincident strategies. If there exists an order-isomorphism φ : (C (S), ⊆
) � (C (T ), ⊆) such that lblT ◦ φ = lblS : C (S) → C (A), then S � T .

Proof. The result follows from Lemma B.1 after having shown that φ must preserves cardinality.

We proceed by induction on x ∈ C (S). If x = ∅, then φ x must be the minimal element of C (S ′)
hence φ x = ∅.
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Otherwise, assume that x
X−−⊂y. Because S is a coincident strategy, either X contains only visible

events, and then

|φ y | − |φ x | = |lblS ′(φ y)| − |lblS ′(φ x)| = |lblS y | − |lblS x | = |y | − |x |
by local injectivity of S and S ′, or X contains a unique neutral element and we conclude easily. □

In some proofs, we will use an equivalent formulation of weak bisimulation on configurations

rather than strategies:

Lemma B.3. Given two A-labelled event structures S, S ′ whose labelling functions are maps. if there
exists a relation R ⊆ C (S) × C (S ′) such that:

• (∅, ∅) ∈ R
• If xRy then lblS (x) = lblS ′(y)
• If x

s−−⊂ x ′ with s neutral, then y ⊆ y ′ for some internal extension y ′ of y and x ′Ry ′ (symmetric
condition for y)

• If x
s−−⊂ x ′ with lblS (s) = a, then y ⊆ y0

s ′−−⊂y ′ for some internal extension y ′ of y and x ′Ry ′
(symmetric condition for y)

Such a R will be called a per-configuration weak bisimulation between S and S ′.

Proof. Assume that S ≈ S ′. Then define the relation R = {(x ,y) ∈ C (S) × C (S ′) | S/x ≈ S ′/y}.
It is easy to show that it satisfies the conditions of the lemma.

Conversely, consider a relation R satisfying the assumption of the lemma. Given B ∈ Games,
write SB to be the least equivalence relation containing the pairs (S/x , S ′/y) for (x ,y) ∈ R when

A/x = B. It is then easy to show that this is a weak bisimulation, implying that S ≈ S ′ since
(∅, ∅) ∈ R. □

Lemma B.4. Consider S, S ′ : A and R a per configuraiton weak bisimulation between them. Consider
xRy. If x has n concurrent visible extensions X1, . . . ,Xn , leading to x ′, then there exists concurrent

coincidences Y1, . . . ,Yn such that y
Yi−−⊂ and y ∪⋃

Yi = y
′.

Proof. Let xi ∈ C (S) such that x
Xi−−⊂ xi . Moreover, we know that y ⊆ y ′ with x ′Ry ′. Write Yi

for the correspondence of S ′ corresponding to Xi via the bijection x ′ ≃ y ′. Assume that the Yi are
not all concurrent, eg. there is a minimal Y1 below Y2. Then y ⊆ y ∪ [Y1) = y1. Because xRy, we
know that x extends to x1 by neutral events such that x1Ry, and x1 can do X1. Because Y1 < Y2, y
can only do Y1 but not Y2. Moreover, since X2 is visible, and S a coincident strategy, the extension

x ⊆ x1 must be compatible with the extension x
X2−−⊂ . Hence x1 can do X2, absurd since y cannot

do Y2. □

B.1 Construction of the interaction
We now show how to construct the interaction of S : A ∥ B and S ′ : A ∥ C . It is defined through the

notion of secured bijections.
Remember that any configuration x of C (S), we write x∗ for the set of internal events of x . A

synchronised configuration is a bijection φ : x ∥ y∗ ≃ x∗ ∥ y (seen as its graph) where x ∈ C (S),
y ∈ C (S ′) with lblS (x) = lbl′S (y) such that:

(1) if s ∈ x is visible, then φ(0, s) = (0, t) with д s = f t
(2) if s ∈ x is internal, then φ(0, s) = (1, s)
(3) if t ∈ y∗, then φ(1, t) = (0, t)
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We see such bijections as graphs, ie. as subsets of (S ∥ S ′)× (S ∥ S ′). We define πS : (S ∥ S ′)× (S ∥
S ′)⇀ S as follows:

πS ((0, e), _) = e πS (_, _) = undef πS ′(_, (1, f )) = f πS ′(_, _) = undef

Notice that for φ : x ∥ y∗ ≃ x∗ ∥ y, πS (φ) = x and πS ′(φ) = y.
Each synchronised configuration φ comes equipped with preorder defined as

(s, t) ≤φ (s ′, t ′) := (s ≤S s ′) ∨ (t ≤S ′ t
′).

Wewrite ≃φ for the equivalence relation generated by ≤φ , andmax(φ) for the set of maximal events

of φ for ≤φ , ie. those events e ∈ φ such that e ≤φ e ′ implies e ′ ≃φ e . A synchronised configuration is

prime when two maximal events for ≤φ are equivalent. (In other terms, “φ has a top coincidence”)

We say that φ
X−−⊂φ ′

when:

• We have φ ⊊ φ ′
and X = φ ′ \ φ.

• πSX splits in concurrent coincidences Y1, . . . ,Yn ∈ S≡, and similarly for πS ′X .

• There is no cycle πSe1 ≡ πSe2, πS ′e2 ≡ πS ′e3, ..., πS ′en−1 ≡ πS ′e1 in X .

Say that φ is reachablewhen it exists a chain ∅
X1−−⊂φ1 . . .

Xn−−⊂φn = φ. We can now define S ∗AS ′
as follows:

• Events: Pairs (φ, e)where φ is a prime reachable synchronised configurations and e ∈ max(φ).
• Causality: (φ, e) ≤ (φ ′, e ′) when φ ⊆ φ ′

• Conflict: (φ, e)#(φ ′, e ′) when there exists no reachable synchronised configuration (not nec-

essarily prime)ψ such that φ ∪ φ ′ ⊆ ψ .
• Labelling (to A ∥ B ∥ C): lbl(φ, (s, s ′)) is equal to lbl(s) or lbl(s ′) (up to reindexing), if any

is defined. If both are defined, note that lblS (s) = lblS ′(s ′) by definition of synchronised

configurations.

Lemma B.5. Suppose that φ
X−−⊂φ1 and φ

X ′
−−⊂φ2. If φ1∪φ2 ⊆ ψ for some synchronised configuration

ψ , then φ1
X ′

−−⊂φ1 ∪ φ2.

Proof. Simple observation. □

Define ΠS : S ∗C S ′ ⇀ S mapping (φ, e) to πS (e) and similarly for ΠS ′ .

Lemma B.6. S ∗A S ′ is a coincident event structure and there is an order-isomorphism:

C (S ∗C S ′) � {φ | φ is a reachable synchronised configuration}

Proof. S ∗A S ′ is a coincident event structure: It is easy to see that since φ is finite [φ, e] can only

have a finite number of elements in S∗AS ′. Moreover, assume that (φ, e)#(φ ′, e ′) and (φ, e) ≤ (φ ′′, e ′′).
If there were a reachable synchronised configurationψ containing φ ′′ ∪ φ ′

, it would also contain

φ ∪ φ ′
, absurd.

Order-isomorphism. Consider a configuration z of S ∗A S ′. Write ψ =
⋃

φ ∈z φ, we show it is

a reachable synchronised configuration. First, since z is a configuration, the set {ΠSφ}φ ∈z is a

pairwise-compatible set of configurations of S . As a result, its union is a configuration x of z (as S
has binary conflict). Similarly, the union of the ΠS ′φ is a configuration y of S ′, and it easy to see

that φ is indeed a synchronised configuration. Reachability follows by an easy induction using

Lemma B.5. □

Lemma B.7. (S ∗A S ′,ΠS ,ΠS ′) is a common behaviour of S and S ′ on C .
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Proof. The functions ΠS and ΠS ′ preserves labelling by construction of the labelling. As we

have seen πSφ and πS ′φ are configurations of S and S ′ respectively, and local injectivity is clear

from the definition of ΠS and ΠS ′ . Moreover, if two coincident events (φ, e) ≡ (φ, e ′), then e ≃φ e ′.
Suppose that πSe and πSe

′
are neither concurrent nor coincident , eg. πSe < πSe

′
. Then since

e ≃φ e ′, we must have πS ′e
′ < πS ′e . This directly contradicts reachability of φ. As a result ΠS and

ΠS ′ are indeed maps of coincident event structures from S ∗A S ′ to S and S ′ respectively.
We have already established condition (1) of common behaviours. Condition (2) arises again

from reachability of φ and the definition of −−⊂ . □

Theorem 5.8. There exists a common behaviour of S and S ′ (S ∗A S ′,ΠS ,ΠS ′) which is the largest
common behaviour, i.e. for every other common behaviour (T ,α , β) there exists a unique simulation
(T ,α , β) → (S ∗A S ′,ΠS ,ΠS ′).

Proof. We are left to show the universal property. Consider a common behaviour (Z ,α , β).
Existence. By local injectivity of α , given x ∈ C (Z ), and property (1) of cones, we have a bijection

φx : αx ∥ (βx)∗ ≃ (α x)∗ ∥ βx which is synchronised. Moreover if x−⊂x ′
, write the φ1, . . . ,φn the

immediate extensions of φx inside φx ′ , and write Xi = φi \ φx . The coincidence x ′ \ x of Z splits in

concurrent coincidences Y1, . . . ,Yn of S (via α ) and in concurrent coincidences Z1, . . . ,Zp of S ′ (via
β). Two elements of X are connected when they project via α or β inside the same coincidence.

Then it is easy to see that each Xi corresponds to a connected component in this graph (acyclic by

definition of common behaviours). This shows that φ
Xi−−⊂φi and the coincidences X1, . . . ,Xn are

concurrent. From this result, we deduce that φx is reachable by iterating over a covering chain of x .
As a result, the map Z → S ∗A S ′ defined by

e 7→
©«
φ[e],


((0,α(e)), (1, β(e))) if both are defined

((0,α(e)), (0,α(e))) if only α defined

((1, β(e)), (1, β(e))) if only β defined

undef if both are undefined

ª®®®®¬
preserves configuration and make the triangles commute. Now if X is a coincidence of Z , we have
seen above that it is mapped to concurrent coincidences of S ∗A S ′, thus proving that this map is

inded a map of coincident event structures.

Uniqueness. It follows from joint injectivity of ΠS and ΠS ′ . □

We finish by some properties of the interaction that will be useful later on. Given a coincident

event structure E and two maps f : E ⇀ F and д : E ⇀ F ′
, and X a coincidence of E, we define

a graph (X , f ,д) whose nodes are elements of X . Two elements e, e ′ ∈ X are connected when

f e ≡ f e ′ or д e ≡ д e ′.

Lemma B.8. For z,w ∈ C (S ∗A S) with z ⊆ w , z−⊂w if and only if the graph (w \ z, f ,д) is
connected.

Proof. We prove both implications.

(⇒) Assume z−⊂w . By definition, we know that Πs (w \ z) splits as concurrent coincidences of
E, Y1 ∪ . . . ∪ Yn , and similarly ΠS ′(w \ z) splits as Z1 ∪ . . . ∪ Zp , and let X ′

be a connected

component of (y \ x , f ,д).
Since X ′

is connected, ΠSX
′
is some Yi1 ∪ . . . ∪ Yik . As a result, x := ΠS (z ∪ X ′) = ΠSz ∪

Yi1 ∪ . . . ∪ Yin ∈ C (S). Similarly, y := ΠS ′(z ∪ X ′) ∈ C (S ′). This implies that z ∪ X ′
is the

graph of a synchronised configuration. Moreover, sincew is reachable, so is z ∪ X ′
, hence

z ∪ X ′ ∈ C (S ∗C S ′). This implies that X = X ′
and X is connected.
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(⇐) We prove the result by contradiction: assume that x−⊂x ′ ⊊ z for some x ′ ∈ C (S ∗A S ′). Since
the graph for z \ x is connected, there must exist e ∈ x ′ \ x and e ∈ z \ x ′

such that, say

ΠSe ≡ΠS z ΠSe
′
. This is absurd, as ΠSx

′
is a subconfiguration of ΠSz and contains ΠSe , it

should also contain ΠSe
′
. Hence we must have x−⊂z.

□

We now characterise minimal conflict in the interaction:

Lemma B.9. Let x ∈ C (S ∗A S ′) such that x has two incompatible extensions of X and X ′. Then
either there exist Y ⊆ Π1X and Y ′ ⊆ Π1X

′, such that Y and Y ′ are incompatible extensions of Π1 x ,
or the same thing for Π2 x ,Π2X and Π2X

′.

Proof. Write φ for the synchronised configuration associated to x andψ ,ψ ′
those associated to

x ∪ X and x ∪ X ′
. Assume that the result does not hold. This implies thatψ ∪ψ ′

is a synchronised

configuration. Since a coincidence ofψ ∪ψ ′
is a coincidence ofψ or ofψ ′

, it is reachable, hence

shows that x ∪ X ∪ X ′ ∈ C (S ∗A S ′) which is absurd. □

B.2 Properties of hidng
We need to show a few properties of the hiding of coincident event structures before moving on.

Remember that given a coincident event structure E and a subset V ⊆ E, the coincident event
structure E ↓ V has event V and causality and conflict inherited from E.

Lemma B.10 (Uniqe witness). Let E be a coincident event structure and x ,y ∈ C (E) such that
every maximal coincidence of x and y intersect V . Then x ∩V = y ∩V implies x = y.

Proof. Since x ∩V = y ∩V , every maximal coincidence of x intersects a coincidence of y and

vice versa, hence max(x) = max(y). Since x = [max(x)] and similarly for y, we get x = y. □

Lemma B.11. Let E be a coincident event structure and V ⊆ E. For x ∈ E, there exists a unique
y ⊆ x such that x ∩V = y ∩V and every maximal coincidence of y intersects V .

Proof. We proceed by induction on x . If all maximal coincidences of x intersect V , then we are

done. Otherwise, assume there is a maximal coincidence X of x disjoint fromV . By induction, there

exists y ⊆ x \ X ⊆ x such that y ∩V = (x \ X ) ∩V = x ∩V whose maximal coincidence intersect

V as desired. Unicity comes from Lemma B.10 □

Lemma B.12. Configurations x of E ↓ V are in one-to-one correspondence with configurations
y ∈ C (E) whose maximal coincidences all intersect V .

Proof. Consider x ∈ C (E ↓ V ). Define y := [x] to be the downclosure of x in E. By construction

all maximal coincidences of y intersect V . Conversely given y ∈ C (E), it is easy to see that

y ∩V ∈ C (E ↓ V ). Moreover, the mapping x 7→ [x] 7→ [x] ∩V is the identity on configurations of

E ↓ V .

Conversely if y ∈ C (E) is such that its maximal coincidences all intersectV , then let y ′ := [y∩V ]
to be the smallest configuration containing y ∩V . By Lemma B.11, y = y ′. □

Lemma B.13. Let E be a coincident event structure and V ⊆ E.

• If x
X−−⊂ x ′ in E, with X ∩V , ∅ then x ∩V

X∩V−−⊂ x ′ ∩V in E ↓ V .

• If x ∩V
X−−⊂y in E ↓ V and x ∪ y ∈ ConE , then there exists x ⊆ x ′ such that:

(1) x ′ ∩V = y,

(2) x ⊆ x0
X∪Z−−⊂ x ′
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Proof. The first point is a simple observation. Any configuration between x ∩ V and x ′ ∩ V
would give, by downclosure a configuration of E between x and x ′

.

For the second point, let x ′ = [x ∪y]. It is clear that x ′ ∩V = y. Moreover, a covering chain from

x to x ′
must go through an atomic step of the form X ∪ Z since X is a set of coincident event of

x ′
. Moreover, since the maximal coincidence of x ′

not in x intersects V , this step must be the last

one. □

We now investigate properties of hiding with respect to maps.

Lemma B.14. Let f : E ⇀ F be a map of coincident event structures and dom(f ) ⊆ V ⊆ E. The
restriction of f defines a map f ↓ V : E ↓ V ⇀ F .

Proof. Since dom(f ) ⊆ V , f (x) = f (x ∩V ). This means that f ↓ V does preserve configurations.

Local injectivity follows from that of f .

If y
X−−⊂y ′ in E ↓ V , consider x ′

:= [y ′] and x := [y]. By Lemma B.13, we have that

x ⊆ x0
X∪Z−−⊂ x1 ⊆ x ′.

It is easy to see that f (x) = f (x0) and f (x ′) = f (x1), and f (X ∪ Z ) = f (X ). Hence applying the

fact that f is a map of event structure we get that f (X ) splits in Y1, . . . ,Yn concurrent extensions

of f (x). This concludes the proof. □

Definition B.15 (Hiding maps). Let f : A⇀ B be a (partial) map of coincident event structures.

The following are equivalent:

(1) Writing V for the domain of f , there is an isomorphism φ : A ↓ V � B such that A⇀ A ↓
V

φ
−→ B = f

(2) There exists a hiding witness for f which is a monotonic map witf : C (B) → C (A) with
f ◦ witf (x) = x for x ∈ C (F ) and witf ◦ f (x) ⊆ x for x ∈ C (A).

Proof. (1) ⇒ (2). The hiding witness of f is y ∈ C (B) 7→ [φ−1(y)] ∈ C (A).
(2) ⇒ (1). We have a monotonic map α : C (A ↓ V ) → C (B) defined as x 7→ f ([x]). Since

V = dom(f ), x and f ([x]) has the same cardinal by injectivity. Conversely, define β : y ∈ C (B) 7→
witf (y) ∩V ∈ C (A ↓ V ) which is also monotonic.

First, notice that witf (f x) = x if all the top coincidences of x intersect V . This is due to

witf (f x)) ⊆ x and f (witf (f x)) = f x hence by local injectivity witf (f x) ∩V = x ∩V . By Lemma

B.11, we conclude witf (f x) = x .
We have:

α(β(y)) = f [witf (y) ∩V ] = f (witf (y)) = y
because witf (y) ∩V = [witf (y) ∩V ] ∩V as V = domf

β(α(x)) = witf (f [x]) ∩V = [x] ∩V = x

because the top coincidences of [x] intersect V by construction

Hence this order-isomorphism induces the desired isomorphism A ↓ V � B by Lemma B.1. □

B.3 Definition of the composition
Lemma 5.10. For any coincident pre-strategy S on A, we have S ≈ E (S).

Proof. Write ES for the set of essential events of S . We construct R = {(x ,y) ∈ C (S)×C (E (S)) |
x ∩ ES = y}. We show it is a weak bisimulation.

Consider xRy.
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• If x
X−−⊂ x ′

: ifX∩ES = ∅, then x ′Ry and we are done. Otherwise, by Lemma B.13,y
X∩ES−−⊂ x ′∩ES .

Since ES contains all visible events, we can conclude.

• If y
Y−−⊂y ′: write x0 = [y ′]. If x0 and x are not consistent, then there must exist a minimal

conflict s s ′ with s ∈ x0 and s
′ ∈ x . Since x ∩ES ⊆ y ′ which is consistent, both at least one

of the coincidences of s and s ′ do not contain a visible event. Assume it is that of s . Without

loss of generality, we can assume s to be the lowest in its coincidence for the map S → N.
Then, s ∈ ES by definition hence s ∈ y ′ - contradicting the consistency of y ′.

□

Lemma B.16. Let X be a coincidence of C (S ′ ⊛ S). Then (X ,ΠS ,ΠS ′) is connected and acyclic.
Moreover, if S and S ′ are strategies, nodes of (X ,ΠS ,ΠS ′) have degree at most two, and if e ∈ X has

degree two, then S(ΠSe) = S ′(ΠS ′e) ∈ B.

Proof. Since there are no coincidences in A or C , (X ,Π1,Π2) and (X ,ΠS ,ΠS ′) are the same

graph, that we know to be acyclic and connected by Lemma B.8. □

Lemma B.17. Let x ∈ C (S ∗A S ′) with two incompatible extensions X and X ′. Then ΠS X and ΠS X
′

are incompatible extensions of ΠS x or ΠS ′ X , ΠS ′ X
′ of ΠS ′ x .

Proof. Direct consequence of B.9: if a conflict occurs in the C component of Π1 or the A
component Π2, then they occur in the game and must be reflected in the other strategy. □

Lemma B.18. Let S : A⊥ ∥ B and S ′ : B⊥ ∥ C be coincident pre-strategies.
(a) If S and S ′ are secret, so are S ′ ⊛ S and S ′ ⊚ S .
(b) If S and S ′ are coincident strategies, so is S ′ ⊚ S .

Proof. (a) Assume that S and S ′ are secret.
(1) First, we show that S ′ ⊛ S is secret. Consider two coincidences X and X ′

involved in a

minimal conflict at x ∈ C (S ′ ⊛ S). This conflict must originate from S or S ′ by Lemma

B.17; assume it is S . This means that there exists Y ⊆ ΠS (X ) and Y ′ ⊆ ΠS (X ′) which are

incompatible extensions of ΠSx . Applying the fact that S is secret, we get two cases. Either

Y and Y ′
are singleton reduced to an internal event; then so must be X and X ′

. Or there

exists negative s ∈ Y and s ′ ∈ Y . If they are projected to A, then the corresponding events

in X and X ′
are also negative as desired. Otherwise, they are mapped to B, which means

that there exists t ∈ ΠS ′(X ) and t ′ ∈ ΠS ′(X ′) with lblS (s) = lblS ′(t) and lblS s ′ = lblS ′ t ′.
Those must be positive, hence since they are in immediate conflict, they must be coincident

to t1, t
′
1
negative. If they are mapped to C , then we are done. Otherwise we continue. We

know we do not reach a cycle because (X ,ΠS ,ΠS ′) is acyclic, hence this must terminate on

negative events mapped to A⊥ ∥ C as desired.

(2) We conclude that S ′ ⊚ S is secret. If we have two coincidences X and X ′
involved in a

minimal conflict in S ′⊚S , then this means that we have a minimal conflict X ∪ I and X ′∪ I ′

in S ′ ⊛ S . The previous point that shows that either X ∪ I and X ′∪ I ′ are singletons reduced
to internal events of S or S ′, which means that I = I ′ = ∅; or there exist s ∈ X ∪I , s ′ ∈ X ′∪I ′
negative in conflict in the game. Since visible events are not hidden, it follows that s ∈ X
and s ′ ∈ X ′

as desired.

(b) Assume that S and S ′ are strategies. We already know that S ′ ⊚ S is secret. We show property

(1) and (2) of strategies:

(1) Let X be a coincidence of S ′ ⊚ S . Then we have in S ′ ⊛ S :

[X )X∪Z−−⊂ [X ].
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where X ∪ Z is a coincidence of S ′ ⊛ S . By Lemma B.8, we know that (X ∪ Z ,ΠS ,ΠS ′) is a
connected acyclic graph with all edges of degree below two. As a result it must be a line.

If X contains a neutral event e for S or for S ′, then {e} would be connected, hence X = {e}.
Otherwise, if X contains only visible events, then they must be the endpoints of the line.

As a result X must be of size below two. Moreover, it is an easy induction on the length of

the line that they must have distinct polarity.

(2) Same reason: only the internal events involved in minimal conflicts are kept.

□

Lemma 5.11. T ⊚ S is a coincident strategy on A⊥ ∥ C .

Proof. Consequence of the previous lemma. □

B.4 Categorical structure
Lifting maps. We now explain how to lift a map of coincident event structures to a coinci-

dent strategy. Consider an injective map f : A → B which preserves minimal conflicts. (If X is

downclosed in A, and f X < C (B) then X < C (A).)

Lemma B.19. The coincident event structure CCCA with labelling function f := A ∥ f : CCCA →
A⊥ ∥ B is a coincident strategy f : A⊥ ∥ B.

Proof. Coincident strategy. Since f does not have internal events, conditions (1), (2) are vacuous.

We check condition (3). Consider two coincidences X = {a, f a} and X ′ = {b, f b} in minimal

conflict in Sf at x = xA ∥ xB . This means that x ∪ X ∪ X ′
is not a configuration of A ∥ B. Since f

preserves minimal conflicts, and also reflects them by virtue of being a map, both xA ∪ {a,b} and
xB ∪ { f a, f b} are not consistent in A and B. Moreover, by race-freeness of A, a and b have the

same polarity. By definition of the polarities on A⊥ ∥ B, then either a and b must be negative, or

f a and f b must be, as f preserves polarities and we can conclude. □

We now show that this operation is well-behaved with respect to composition.

Lemma B.20. Let S : A ∥ B be a coincident strategy and f : B → C an injective and conflict-
preserving map. For x ∈ C (S) with image xB in B, there exists a configuration y ∈ f ⊛ S such that
Π1y = x ∥ xB . Moreover, the top coincidences of y all contain one essential event of f ⊛ S .

Proof. Write lblS x = xA ∥ xB . We show that there exists a configuration ofC (S ∥ C)×C (A ∥ Sf )
whose first projection is x ∥ xB , which allows us to conclude by Lemma B.6. There is a synchronised

configuration φx : x ∥ xB ≃ x∗ ∥ xA ∥ xB ∥ xB obtained from local injectivity of S . This
synchronised configuration is easily shown to be reachable.

Finally, consider a top coincidence X of φx not intersecting an essential events. It projects to

top coincidences X1, . . . ,Xn of x in S . By assumption, these top coincidences are not internal,

since as they are involved in a minimal conflict, and singletons, they would also occur in the

interaction. So they must all contain only events in B which are hidden by E (·). In that case, X

must also contain their image by f by definition of the interaction, which are visible in f ⊚S , hence
a contradiction. □

Lemma B.21. Let S : A⊥ ∥ B be an essential coincident strategy. For any injective f : B → C , then
f ⊚ S � (S, (A ∥ f ) ◦ lblS ).

Proof. We show that their underlying configuration domains are isomorphic, in a way that

preserves projection to the game, hence by Lemma B.2, we conclude.
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Consider a configuration x of (A ∥ f ) ◦ S with image xA ∥ f (xB ) on the game. By Lemma B.20,

there exists z ∈ f ⊛ S such that Π1z = x ∥ f (xB ). Mapping x to z ∩ Ef ⊛S defines a monotonic

mapping C (S) → C (f ⊚ S).
Injectivity. Assume that we have two configurations x ,x ′

of (A ∥ f ) ◦ S giving birth to two

configurations z, z ′ with top coincidences containing essential events, such that z∩Ef ⊛S = z ′∩Ef ⊛S .
By Lemma B.10, we conclude that z = z ′ and then x = x ′

by projecting.

Surjectivity. Given w ∈ C (f ⊚ S), we first form z = [w] ∈ C (f ⊛ S) and then we project this

configuration to its component on S . This yields the desired inverse map: C (f ⊚ S) → C (S). □

Proposition 5.12. For a coincident strategy S on A, CCCA ⊚ S � E (S).

Proof. Consequence of Lemma B.21. □

B.4.1 Associativity. We first start with a generalisation of the Zipping lemma:

Lemma B.22. Let h : S ⇀ S ′ be a hiding map making the following diagram commute:

S S ′

A ∥ B ∥ C A ∥ C

h

lblS lblS ′

where S, S ′ are agents.
Then for any ρ : U → C ∥ D, the morphism U ⊛ h : U ⊛ S ⇀ U ⊛ S ′ defined using the universal

property ofU ⊛ S ′ is a hiding map.

Proof. Configurations ofU ⊛ S ′ correspond to pairs xS ′ ∥ xD and xA ∥ xU such that:

lblS (x ′
S ) = xA ∥ xC ρxU = xC = xD

for some xC ∈ C (C). From such a pair, we can construct the pair with(xS ′) ∥ xD and xA ∥ xB ∥ xU
where xB is obtained by lblS (with(xS ′)) = xA ∥ xB ∥ xC . The induced bijection is reachable, as the

original pair was. This defines a map

witU ⊛h : C (U ⊛ S ′) → C (U ⊛ S)
which satisfies the required assumptions. □

Lemma B.23. The composition ⊚ is associative

Proof. Consider S : A⊥ ∥ B,U : B⊥ ∥ C and V : C⊥ ∥ D. First, it is easy to show that interaction

is associative (using the universal property), hence we have an isomorphism:

a : (V ⊛ U ) ⊛ S � V ⊛ (U ⊛ S).
By using the Zipping Lemma, we have the following two hiding maps:

V ⊛ (U ⊛ S)
V ⊛hS,U−−−−−−→ V ⊛ (U ⊚ S)

hU ⊚ρ,S−−−−−→ V ⊚ (U ⊚ S)
where hS,U : U ⊛ S ⇀ U ⊚ S is the hiding map of the composition.

Because hiding maps are stable under composition, and isomorphisms are special cases of hiding

maps; by pre-composing the hiding map by the isomorphism on the interaction, we get the hiding

map:

(V ⊛ U ) ⊛ S � V ⊛ (U ⊛ S)⇀ V ⊚ (U ⊚ S).
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Since its domain is clearly (U ⊚T ) ⊚ S , we get the desired result:

(V ⊚U ) ⊚ S � V ⊚ (U ⊚ S).
□

Theorem 5.13. We obtain a compact-closed category CGS whose objects are games, and morphisms
are essential coincident strategies up to isomorphism.

Proof. That it is a category follows from Proposition 5.12, and Lemma B.23. Compact-closed

structure is obtained by noticing that the monoidal operation ∥ lifts to a monoidal operation on

CGS . □

Lemma 5.16. For S : A, we have Le ⊚ S � e _ S .

Proof. We establish that their configuration domains are isomorphic. We have on one hand:

C (e _ S) � {xS ∥ xe ∈ C (S ∥ e) | (xS )v , ∅ ⇒ xe , ∅}.
On the other hand, if x ∈ C (Le ⊚ S), it is easy to see that if ΠLe [x] is empty, then ΠS [x] can only

contain internal. From there it is easy to see that C (Le ⊚ S) is isomorphic of the right-hand side of

the right equation via x 7→ ΠS [x] ∥ ΠLe [x] ∩ {e}. □

Lemma 5.17. CGS (A) along with inclusion forms an ω-CPO.

Proof. First, it easy to see that coincident event structures are closed under least upper bounds of

ω-chain by simply constructing the union of a ascending chain of coincident event structures. Then,

all conditions to be a coincident strategy are local, ie. involve only a finite number of events, which

must occur at a finite stage, hence the least upper bound of an ω-chain of coincident strategies

must be a coincident strategies. □

Lemma 5.18. For a coincident strategy S : A⊥ ∥ B, the operation R : B⊥ ∥ C 7→ R ⊚B S is a
continuous map CGS (B,C) → CGS (A,C).

Proof. Straightforward. If S ⊆ S ′, then it is easy to see that R ⊚ S ⊆ R ⊚ S ′. That it preserves
least upper bounds of ω-chain is also a simple observation. □

B.5 Behavioural equivalences
Lemma 5.20. If S ≈ S ′ : A⊥ ∥ B, then for all R : B⊥ ∥ C , then R ⊚ S ≈ R ⊚ S ′.

Proof. Consider S, S ′ : A⊥ ∥ B which are weakly bisimilar andU : B⊥ ∥ C . We use characterisa-

tion of weak bisimulation of Lemma B.3.

Consider R a relation between configurations S and S ′ satisfying the assumptions of the lemma.

DefineU ⊛ R = {(x ,y) ∈ C (U ⊛ S) × C (U ⊛ S ′) | ΠU x = ΠUy ∧ (ΠSx)R(ΠS ′y)}.
We show it satisfies the conditions of the lemma. Consider x ∈ C (U ⊛ S) and y ∈ C (U ⊛ S ′) such

that x(U ⊚ R)y and x
X−−⊂ x ′

. This means that ΠSx has n concurrent extensions Y1, . . . ,Yn leading

to ΠSx
′
and ΠU x hasm concurrent extensions Z1, . . . ,Zm leading to ΠU x

′
. If one of the Yi or the

Zi contains an internal event, then X is a singleton and we can conclude easily. The interesting

case is when all the Yi and Z j are visible.

Since ΠSx ⊆ ΠSx
′
, we get that ΠS ′y ⊆ y ′ with ΠS ′x

′Ry ′. By Lemma B.4, we know that y ′ can be

chosen so that the extensions corresponding to Y1, . . . ,Yn are also concurrent. Hence there exists a

configuration z ∈ C (U ⊛ S) such that ΠS ′z = y
′
and ΠU z = ΠU x

′
.

This proves thatU ⊛ S ≈ U ⊛ S ′. We then conclude by Lemma 5.10. □

Lemma 5.21. For any submodel M of CGS and S,R ∈ M (A), if S ≈ T then S ≃M S ′.
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Proof. We show that weak bisimilarity is a reduction-closed congruence. By definition of weak

bisimilarity and Lemma 5.20, we only have to show that if S ≈ S ′, then they have the same barb,

which is again a trivial consequence of the definition. □

Lemma 5.24. If M is a testing-closed submodel, then for S,R ∈ M (A), we have: S ≈ R iff S ≃M T .

Proof. The left-to-right implication follows from Lemma 5.21. We show the right-to-left impli-

cation.

First, when we have an isomorphism A � B/x on two games for x ∈ C (B), then we can lift

strategies from B to A by iterating the e _ S construction. Given S : A, we write x _ S for the

strategy on B obtained by adding all the events in x .
Define a relation

R = {(x _ S,x _ R) | S,R ∈ C (A) ∧A � B/x ∧ S ≃C R}.
We show that R is a weak bisimulation. Consider x _ SRx _ R.

• If x _ S
τ−→ S ′, then we know that S ′ � x _ S0 with S

τ−→ S0 and we conclude because

S ≃C R.

• If x _ S
e−→ S ′ with e ∈ x , then S ′ � (x \ {e}) _ S , and we conclude since x _ R

e−→
(x \ {e}) _ R.

• If x = ∅ and S
e−→ S ′, consider a strategyU : A⊥ ∥ test(A,α) in M (A,B) that defines α . Then

we know both that (U ⊚ S)R(U ⊚ R) by definition of reduction-closed congruences, and that

U ⊚ S
τ
=⇒ succ+ · S ′.

As a result, we know that U ⊚ R evolves to R0, related by R to succ+ · S ′. Since barb(R0) =
barb(U ⊚ R) = {succ+}, it follows that R0

τ
=⇒ (succ+ _ R′) with R

α
=⇒ R′

. Moreover, R also

relates (succ+ _ R′) and (succ+ _ S ′) since the latter is deterministic and cannot do any

internal transitions. We hence deduce e _ S ′Re _ R′
from the definition ofM -congruences.

□

Theorem 5.25 (Semantic full abstraction – CGS ). The coincident strategy Uα defines the
action α for CGS . As a result, CGS is testing-closed, and S ≃ R iff S ≈ R for S,R ∈ CGS (A).

Proof. We prove that the strategies proposed actually define the action. Consider a game A and

an action α . There are two cases.

(1) If α = e:

(a) Assume that S
e−→ S ′.

Ue ⊚ S � succ+ _ S ′.

We have

(Ue ⊚ S)
τ
=⇒ (succ+ · CCCA/e ) ⊚ S ′ � succ+ _ S ′.

(b) Assume that U ⊚ S has succ as only barb. this means that U ⊚ S � succ+ _ S ′ with
S ′ : A/e . It is then straightforward to see that S/e � S ′ as desired.

(2) If α = {a−,b+}:
(a) Consider S

α−→ S ′. Then we have

(Ue ⊚ S)
τ−→ ((a ∥ b) · CCCA/α ) ⊚ S

Since a ∥ b can synchronize with a coincidence on a b, we have that

((a ∥ b) · succ+ · CCCA/α ) ⊚ S
τ
=⇒ (succ+ · CCCA/α ) ⊚ S ′ � succ+ _ S ′.

as desired.
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(b) Suppose that Uα ⊚ S evolves to S0 and both have only a barb on succ+. This shows that S
must contain a configuration x where a and b occurs. Moreover if a and b were concurrent,

or causally comparable, then they would trigger one of the fail branch. This means that

there exists a coincidence X whose label is {a,b} and [X ) contains only neutral event in S

hence S
α
=⇒ S ′ where S ′ is such that S0

τ
=⇒ succ+ _ S ′.

□

We now move on to the asynchronous setting. Given a strategy S : A where S is an event

structure, we write S : A for the asynchronous strategy CCA ⊚ S : A. If S : A is asynchronous, we

have

Le ⊚ S � CCe ·A ⊚ Le ⊚ CCA ⊚ S � e _ S : e · A.
Moreover, we have L′e ⊚ S � e _ S for asynchronous S : A.

Theorem 5.26 (Semantic full abstraction – CGA). The submodel CGA is testing-closed, hence
for any asynchronous strategies S,R : A, we have:

S ≃CGS R iff S ≈ R iff S ≃CGA R.

Proof. We already know that the left and middle statements are equivalent. Moreover we also

know that S ≈ S ′ implies S ≃CGA S ′.
First, define RA to be the set of pairs of asynchronous strategies (S, S ′) such that S ≃CGA S ′. It is

easy to see that RA is a CGA-congruence (for the last property by using the test L′e ).
Note that for asynchronous strategies, the only actions of a game A are single events. For an

action e ∈ min(A), consider Ue = (e · succ+) · CCA : (e · A)⊥ ∥ test(A, e). Using receptivity and

courtesy it is easy to show thatUe defines e for CGA (but not for CGS ).

SinceUe is asynchronous, this means thatCGA isCGA-closed. Since the domain of RA is included

in CGA(A), it follows that S ≃CGA S ′ ⇒ S ≈ S ′ as desired. □

C PROOFS OF SECTION 6
Lemma 6.1. Consider Γ ⊢ P ,Q ▷ ∆. If P ≡ Q then JPK(γ ) � JQK(γ ) for γ ∈ JΓK.

Proof. By simple induction on the derivation that P ≡ Q . □

Given a process ⊢ P ▷ ∆, we write Pk where fixpoints have been unfolded k times, using a

deadlocking process⊥ for k = 0. As a result, Pk is a finite process (i.e. without recursion). Moreover,

since J⊥K can be embedded in any strategy, we have an embedding JPk K ↪→ JPk+1K.

Lemma C.1. For any well-typed process P , JPK = limi (JPiK).
Proof. It is clear that each of the JPiK embeds into JPK. As a result, there is an embedding

lim(JPiK) ↪→ JPK. By induction on JPK, it is easy to see that this embedding must be surjective since

any event must occur after a finite number of unfolding. □

Lemma 6.3 (Soundness and adeqacy). Let ⊢ P ▷ ∆ be a well-typed process. Then we have: (1) if
P →∗ Q , then JPK

τ
=⇒ JQK; and (2) if JPK

τ
=⇒ S then S = JQK with P →∗ Q .

Proof. (1) Assume that P → Q . We proceed by induction on the derivation of P → Q :

• If P = Q + R → Q , then JPK = (∗ · JQK + ∗ · JRK) τ
=⇒ JQK.

• If P = P0 ∥ R → Q0 ∥ R = Q . From JP0K
τ
=⇒ JQ0K we deduce easily JPK

τ
=⇒ JQK.

• Similarly if P ≡ P ′ → Q ′ ≡ Q we conclude by Lemma 6.1.

• If P = (νa)P0 → (νa)Q0 = Q , then from JP0K
τ
=⇒ JQ0K we deduce that CCCA ⊚ JP0K

τ
=⇒

CCCA ⊚ JQ0K since initial minimal events will be preserved during composition.
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• If P = (νa)(a!lk ⟨ũ⟩. P ′ | &i ∈Ia?li (x̃i ). Pi → P ′ ∥ Pk [ũ/x̃k ] = P . Write R0 = a!lk ⟨ũ⟩. P ′
and

R1 = &i ∈Ia?li (x̃i )Pi . Writing A =
∑

i ∈I (li ,−) · (JS̃iK ∥ JSK), we have

JR0K : A⊥ ∥ J∆K JR1K : A ∥ J∆′K

By the law of compact-closed category we have

JPK = CCCA ⊚ (JR0 ∥ R1K) � R0 ⊚A R1 : J∆K ∥ J∆′K.

R0 has a single minimal event, labelled (a,+, lk ) which will match with the corresponding

negative event in R1. This event is not on J∆K, J∆′K and will be hidden during composition.

Hence:

JPK � JP ′K ∥ JPk K

We can conclude by noticing that JP ′
k K � JPk [ũ/x̃]K since renaming is invisible in the

semantics (it is simply relabelling).

Notice in the proof a crucial thing: if P → Q due to communication, then JPK � JQK.
(2) Assume that JPK

τ−→ JPK/s for a minimal internal event s ∈ JPK. Write Pk for the first finite

approximation of P that contains s . Since Pk is recursion-free, we can reduce Pk into P ′
k by

performing all the possible communications. Since communication are deterministic, we have

JPk K � JP ′
k K. Up to structural congruence, we can assume that P ′

k is of the form (νã)(Q1 |
. . . | Qn) where Qi does not start with a restriction or parallel. The event corresponding to s
in JP ′

k K must correspond to an initial event of Qi . As a result, Qi must be of the form Q +Q ′
,

and say that s corresponds to the Q branch. Then we have that

Pk →∗ P ′
k → (νã)(Q1 | . . . | Q | . . . | Qn)

from which we deduce a similar derivation for P .
□

Lemma 6.2. Consider a context ∆ = a1 : A1, . . . ,an : An , and ⊢ P ▷∆,∆P and ⊢ Q ▷∆,∆Q . We have

JQK ⊚J∆K JPK � JQ ⊚∆ PK (= J(νã)(P | Q)K).

Moreover, for a type T without recursion, we have J[u = v]T K = CCJT K.

Proof. Consequence of the law of compact closed categories. □

C.1 Full abstraction

Lemma 6.4. Let ⊢ P ▷ ∆. Then P ⇓a if and only if (|P |) a!l
==⇒ for some l ∈ L .

Proof. Assume that P →∗ P ′
and P ′ ↓a . Then by definition of the interpretation, JP ′K

e−→ where

chan(e) = a. As a result, by soundness, JPK
τ
=⇒ JP ′K, which altogether by soundness implies that

(|P |) e
=⇒ since a < ∆.

Assume that (|P |) e
=⇒ S with chan(e) = a. Then there exists a neutral configuration x of JPK such

that x
s−−⊂ with lbls = e . By adequacy, this means that P →∗ Q and JQK � JPK/x . As a result, JQK

has a minimal positive event on channel a. As for the adequacy proof, it is easy to see that Q can

be reduced until it is of the form (νb̃)(a!l ⟨ũ⟩ | Q ′) which entails the result since a < ∆. □

Lemma C.2. The submodel Cπ is closed.
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Proof. Suppose that ∆ is of the form u1 : T1, . . . ,un : Tn . Consider e ∈ min(J∆K). Then chan(e)
is one of the ui . Assume that e is positive. This implies that Ti is of the form ⊕i ∈I !li ⟨S̃i ⟩.T ′

i . Write

lk for the message of e . We then let:

Te = (νb̃)(ui !lk ⟨b̃⟩.c!succ⟨u1, . . . ,ui , b̃,ui ,ui+1, . . . ,un⟩)
where b̃ : T̃k . It is easy to see that Te is well-typed on the context:

∆′ = ∆, c : !succ(T1, . . . ,Ti−1, S̃k ,T ′
k ,Ti+1, . . . ,Tn)

A simple observation yields that J∆′K � J∆K ∥ test(J∆K, e) and (|Te |) = Ue . The case when e is

negative is similar, but we replace the the selection on ui by a branching, and use a deadlocking

process for the branches not corresponding to lk .
Consider now two events e− and e ′+ inmin(J∆K). As before, assume that e corresponds to channel

ui and e
′
to channel uj with labels l and l ′ respectively. Then we let

T{e,e ′ } =(νw̃d)(uj !l ⟨w̃⟩.d! ∥ ui?l(ṽ).d?csucc!succ⟨ũ, ṽ, w̃⟩
+(ui?l(ṽ).uj !(w̃). cfail!fail)
+(uj !(w̃).ui?l(ṽ). cfail!fail)

Similarly, we see that T{e,e ′ } lives on a context whose interpretation is J∆K ∥ test(J∆K, {e, e ′}),
and that JT{e,e ′ }K � U{e,e ′ } .
This shows that Cπ is closed. □

Theorem 6.5. Cπ is testing-closed. As a result, for ⊢ P ,Q ▷ ∆, P ≃ Q if and only if (|P |) ≃ (|Q |).
Proof. Right-to-left. From Lemma 6.3 and 6.4, the relation (|P |) ≃ (|Q |) is a reduction-closed

congruence which entails the result.

Left-to-right. Because Cπ is testing-closed, we get:

(|P |) ≃ (|Q |) iff (|P |) ≃Cπ (|Q |).
We then observe that the relation R = {((|P |), (|P ′ |)) | P ≃ P ′} is a Cπ -congruence by Lemma 6.3

and 6.4. As a result: P ≃ P ′ ⇒ (|P |) ≃Cπ (|P ′ |) ⇒ (|P |) ≃ (|P ′ |). □

C.2 Finite definability of internal strategies
Lemma C.3. Let S : A⊥ ∥ B and T : B⊥ ∥ C be confusion-free. Then T ⊚ S is confusion-free.

Proof. We first show the interaction T ⊛ S is confusion-free.

(1) If e T ⊛Se
′

T ⊛Se
′′
, then we have e.g. ΠSe SΠSe

′
. This is either because ΠSe and

ΠSe
′
are internal, in which case ΠSe

′′
must also be internal and ΠSe

′
SΠSe

′′
, or because

they are negative, and in which case we have ΠSe
′

SΠSe
′′
as well. In both cases, we can

conclude by confusion-freeness of S .
(2) If e T ⊛Se

′
, with say ΠSe SΠSe

′
, then we have [ΠSe) = [ΠSe

′). If e and e ′ are internal,
then we conclude that [e) = [e ′) since [e) ∪ [e ′) is a configuration; and if they are negative,

then they must be sent to A which also entails [e) = [e ′) as desired.
From this we deduce that T ⊚ S is also confusion-free since e T⊚Se

′
implies e T ⊛Se

′
as

events in minimal conflicts are never hidden. □

Lemma 6.7. Let ⊢ P ▷ ∆ be an internal session process. Then JPK is an internal strategy.

Proof. By the previous lemma, it is easy to see that JPK is confusion-free and exhaustive-

matching. We focus on the fact that JPK has no-nontrivial coincidences. There are two cases where

the coincident copycat appears:
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• If P = (νa)Q . We know that JPK = CCJ∆K ⊚ JQK. Consider a non-trivial coincidence {s−, s ′+}
coincidence of JPK. In CCA ⊛ JQK, this must correspond to a coincidence X = {s, s ′, e1, . . . , en}
and the graph (X ,ΠJQK,ΠCCJ∆K ) must be connected. Since lbl(s) is not in J∆K, and s must be

connected to another element s0 of X , it must be that ΠJQKs and ΠJQKs0 are coincident in JQK,
absurd by induction hypothesis.

• When P = (ν (b̃ : B̃))a!l ⟨b̃⟩.Q(b̃). In this case, we have

JPK = CCJB̃K ⊚ ((a, l ,+) · (CCJB̃K ∥ JQK)
= (a, l ,+) ⊚ (CCJB̃K ⊚ (CCJB̃K ∥ JQK)
= (a, l ,+) ⊚ (JQK ⊚ CCJB̃K)
= (a, l ,+) ⊚ JQK

which is coincident-free.

□

Lemma 6.8. Let S : J∆K be a finite internal strategy such that S is a forest. Then there exists an
internal process P such that JPK = S .

Proof. We proceed simply by induction on S . If S is empty but J∆K is not, we define S by

P = (νab)(a!∗.b!∗ | a? ∗ .b? ∗ . P∆)
where P∆ is a process exploring the type ∆, easily defined by induction on ∆. Because of the deadlock
JPK is indeed empty.

Otherwise, since S is a forest, S = S1 ∥ . . . ∥ Sn where Si has a unique minimal cell ci . Then

∆ must split into ∆1, . . . ,∆n so that Si is an internal strategy on J∆iK which is a forest. Then by

induction, Si = JPiK for some ⊢ Pi ▷ ∆i and

JP1 ∥ . . . ∥ PnK � JSK.

If S has a unique minimal cell c = {s1, . . . , sn}. Write S j = S/[sj ]. If c is an internal cell, then S j
is an internal strategy on J∆K which is a forest, hence defined by some Pj . Then S is defined by

P1 + . . . + Pn .
If ci is a positive cell, then ∆ must be of the form ∆0,a : ⊕!li ⟨T̃i ⟩Si , with c a singleton with

channel a, and message lk . Write ∆′
for ∆0,a : Sk , b̃ : T̃k where the names b̃ do not occur in ∆0.

Then S1 is an internal strategy on J∆′K hence is defined by P ′
. Therefore, S is defined by

P = a!lk (b̃). P ′

If ci is a negative cell, then ∆ must be of the form ∆0,a : &1≤i≤n?li (T̃i ). Si . Moreover, because S is

exhaustive matching, cmust be of the form {s1, . . . , sn}. Then as for the positive case, each S/[si ] can
be defined by a process Pi with extra free variables x̃i and S is defined by

˘
1≤i≤n a?li (x̃i ). Pi . □

Lemma 6.9. Let S : J∆K be an internal strategy. If S has causal complexity > 0, then there exists
S ′ : Ja : ⊥,b : 1K⊥ ∥ A such that cc(S ′) < cc(S) and S � S ′ ⊚Ja:⊥,b :1K CCJ1K.

Proof. Since S has nonzero causal complexity, there exists s ∈ S with nonzero causal complexity.

As a result, it has at least two predecessors. Because the game is a forest, there must exist at least

one s ′ _ s such that lbl(s ′) and lbl(s) are concurrent.
We define S ′ on the game Ja : ⊥,b : 1K⊥ ∥ A as follows. Its events are S ∪ {s1, s2}. Conflict is that

of S and labelling is that of S plus lbl(s1) = a!() and lbl(s2) = b?(). Causality is defined as

(≤S \{(s ′, s)} ∪ {(s0, s2) | s0 < s ∧ s0 , s
′} ∪ {(s ′, s1)}.
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It is easy to see that S ′ is indeed a coincident strategy. The fact that lblS is a map of event structure

relies on lblSs ′ and lblSs being concurrent. Now let us compute the join complexity of S ′:

• The join arity of s1 is 1, so its join complexity is zero.

• The join complexity of s1 is |[t1]|+. . . |[tk ]|+|[r1]|+. . .+|[rm]|where the ti are the predecessors
of s apart from s ′, and the ri are the predecessors of s

′
. Since |[s ′]| > |[r1]| + . . . |[rn]|, we

conclude that cc(s1) < cc(s).
• In S ′, s has a unique predecessor which is s2. Hence its join complexity is zero.

• Other events of S ′ have the same join complexity as in S .

Hence cc(S ′) < cc(S) as desired.
Then, in the interaction S ′ ⊛ CC1, as an event structure, is the same as S ′ with the extra causal

link s1 ≤ s2 added by copycat. When we hide, it is easy to see that we recover the missing link

s ′ ≤ s through the chain s ′ _ s2 _ s1 _ s . Hence S ′ ⊚ CC1 � S .
□

Theorem 6.10. If S : J∆K is finite internal, there exists an internal process P with JPK � S .

Proof. We iterate Lemma 6.9, using the fact that composition is definable (Lemma 6.2). □

Lemma C.4. Let S : A be a coincident strategy with satisfies the uniqueness condition of receptivity.
If CCA ⊚ S ≈ S then S is an asynchronous strategy.

Proof. First, CCA ⊚ S is a coincidence-free event structure since CCA has no non-trivial coinci-

dences. As a result S is also a coincidence-free event structure. We show it is a strategy:

• Receptivity. We already know the uniqueness. Let x ∈ C (S) such that lbl(x) extends by a

negative e ∈ A. There exists y ∈ C (CCA ⊚ S) such that S/x ≈ (CCA ⊚ S)/y. Because CCA ⊚ S is

receptive, y can extend by an event mapped to e , forcing x to be able to extend by an event

mapped to e .
• Courtesy. Let e _ e ′ such that lblS (e) and lblS (e ′) are concurrent. Consider a configuration
y ∈ C (CCA⊚S)weakly bisimilar to [e). Assume that e is positive or e ′ is negative. Then playing
the bisimulation game, y can extend by e0, and then by e ′

0
matching e and e ′ respectively.

Since [e) cannot do lblS (e ′) right away, it must be that e0 _ e ′
0
. By courtesy of CCA ⊚ S , it

follows that e0 must be negative and e ′
0
positive, as desired.

□

Lemma 6.6. Consider a context ∆ = a1 : A1, . . . ,an : An which does not contain a name and its
coname. For ⊢ P ▷ ∆, JPK is an asynchronous strategy if and only if (νã)(P | [̃a = b̃]) ≃ P{b̃/ã}.

Proof. Consequence of Lemma C.4, since strategies in the interpretation obviously satisfy the

uniqueness of receptivity. □

D PROOFS OF SECTION 7
D.1 Encoding of strategies

Lemma D.1. S is an event structure.

Proof. Clearly ≤↑S is a preorder and ↑S is a coincident event structure. We show that ≤↑S is

antisymmetric. Consider a cycle

(s1,α1) ≺ . . . ≺ (sn ,αn) ≺ (s1,α1)
in ↑S . The function π1 : S → S can easily be seen to be monotonic. As a result, we have:

s1 ≤S . . . ≤S sn ≤S s1
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ie. the si are coincident. This implies that n = 2 and s1 and s2 are visible and have opposite polarities.
Say that s1 is negative and s2 positive. From (s1,α1) ≺ (s2,α2), since s1 and s2 are coincident, we get
that α1 = α2 = r, and from (s2,α2) ≺ (s1,α1) we get α1 = α2 = a: absurd. □

Lemma 7.2. S is a coincidence-free strategy on ↑A.

Proof. Since S is an event structure, we need only to show that it is secret.

Consider x ∈ C (S) with two incompatible extensions (s1,α1) and (s2,α2). By definition of

consistency in S we must have α1,α2 ∈ {r, ∗}. Write y = [π1x] ∈ C (S). Then since (s1,α1) and
(s2,α2) are incompatible extensions of x , y cannot contain s1 or s2: this would mean, eg. s1 is

coincident to some s ′
1
∈ π1x and this s ′

1
would also be in conflict with s2, absurd. WriteX1 andX2 for

the coincidences of s1 and s2. We have y
X1−−⊂ and y

X2−−⊂ . By assumption they must be incompatible

hence we have by secrecy of S :

• Either X1 = {s1} and X2 = {s2} with s1, s2 neutral and in a minimal conflict at y. Then we

can conclude.

• Either there exists s ′
1
∈ X1 and s

′
2
∈ X2 negative, whose image in the game is in conflict. Then

we must have s1 = s
′
1
and s2 = s

′
2
since in a coincidence, negative requests are performed first.

Hence we can conclude.

□

D.2 Characterisation of the configurations of ↑S
For the proofs of the next subsection, we will need to have a tight grasp of the configurations

of ↑S . First, notice that any configuration y of ↑A splits into r(y) = {a | (a, r) ∈ y} and a(y) =
{a | (a, a) ∈ y}. A configuration of y ∈ ↑A is complete when r(y) = a(y). There is an obvious

order-isomorphism:

φ : C (A) � Cc (↑A)
where Cc (↑A) are the complete configurations of ↑A.

To characterise the structure of configurations of ↑S , we need to first characterise configurations

of CCA ⊚ S when S is a coincidence-free strategy on A. We write ⊑A for the Scott order on a game

A: x ⊑A y when x ⊇−⊆+ y. Say that x ∈ C (S) is fully propagated for y ∈ C (A) if y ⊑ lblS (x), and
for any s ∈ max(x) which is visible but not involved in a minimal conflict, then lblS (s) ∈ y+.
Lemma D.2. Let S : A be a coincidence-free strategy. There is an order isomorphism:

C (CCA ⊚ S) � {(x ,y) | x is fully propagated for y}.
Proof. First, because interaction with copycat is deadlock free, we have an order-isomorphism:

C (CCA ⊛ S) = {(x ,y) | x ∈ C (S) & y ⊑ lblS (x)}.
From C (CCA⊚S). Considerw ∈ C (CCA⊚S). Its downclosure [w] yields a configuration of CCA ⊛S ,

corresponding to a pair (x ,y) ∈ C (S) × C (A) with y ⊑ lblS (x). Consider an element s ∈ max(x)
visible, but not involved in a minimal conflict. The configuration [w] corresponds to a secured

bijection φ : x ∥ lblS (y) ≃ x∗ ∥ lblS (x) ∥ y, and events of [w] are in bijection with elements in the

graph of φ. So s corresponds to an element ((0, s), (1, lblS (s))) ∈ φ. This element cannot be maximal

in [w] since [w] only contains maximal element ((0, s), (1, lblS (s))) where s is involved in a minimal

conflict; or ((1,a), (2,a)) with a ∈ y which is not the case by assumption. Hence this element is not

maximal in [w], and since s is maximal in x , this implies that s must be positive and lblS (s) must

belong to y.
This map is also clearly monotonic and injective as simply being a restriction of the aforemen-

tionned isomorphism on configurations of the interaction.
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To C (CCA⊛S). Given a pair (x ,y)we can form the configuration of the interaction z ∈ C (CCA⊛S)
corresponding to it. Consider a maximal event α ∈ z. There are three possibilities:

• If α = ((1,a), (2,a)) then α is indeed not hidden during composition

• If α = ((0, s), (0, s)) then s is an internal event of S so it must be involved in a minimal conflict,

and so must α hence it is also not hidden.

• Finally, if α = ((0, s), (1, lblS (s))) then we know that s is visible, must also be maximal (since

α ) is. If it is involved in a minimal conflict, it is not hidden during composition; and if it is

not involved in a minimal conflict, then lblS (s) ∈ y+ which contradicts minimality of α since

α _ ((1, lblS (s)), (2, lblS (s))).
Hence z ∩ CCA ⊚ S is the desired configuration.

It is easy to show that those two maps are inverse of each other. □

In the case of S , since it is secret, x ∈ C (S) is fully-propagated for y ∈ C (↑A) when y ⊑ lblS (x)
and lblS (max(x)) ⊆ y+.

To understand the structure of ↑S , we remark this:

Lemma D.3. Let z be a configuration of ↑S corresponding to (x ,y) via Lemma D.2. Then for any
visible s ∈ πx , (s, a) ∈ x if and only one of the conditions is satisfied:

• s is not maximal in [πx]
• (lblS (s), a) ∈ y and if s is positive, then s ≡ s ′ with (lblS (s ′), a) ∈ y.

Proof. Consider (s, a) ∈ x such that s ∈ πx is maximal. Note that (s, a) is not involved in a

minimal conflict as it is an acknowledgement.

• If (s, a) is maximal in s , because x is fully propagated in y, (lblS (s), a) should be a positive

event of y, implying that s is negative.
• If (s, a) is not maximal, this means (s, a) < (s ′, a) ∈ x for s+ ≡ s ′− and (lblS (s ′), a) ∈ y because

(s ′, a) is maximal in x .

□

This means that the mapping

χ : C (↑S) → C (S)× C (A)× C (A)
(x ,y) 7→ (π x , r(y), a(y))

is injective. We now spell out a list of axioms on these triples to characterise the image of χ . A
triple (x ,yr,ya) ∈ C (S) × C (A) × C (A) is a lifted configuration of S when:

(1) The set lblS (x) := ya × {a} ∪ yr × {r} is a configuration of ↑A.
(2) ya ⊆ lblS (x) ⊆− yr
(3) If s− ∈ max(x), and lblS (s) < ya then s is not separated.
(4) If s+ ∈ [x), then lblS (s) ∈ ya.
(5) If {s+, s ′−} is a coincidence of x , then lblS (s ′) ∈ ya implies lblS (s) ∈ ya.

Lemma D.4. For (x0,y0) corresponding to a configuration of ↑S , the triple χ (x0,y0) is a lifted
configuration.

Proof. Write χ (x0,y0) = (x ,yr,ya). We verify the axioms:

(1) Trivial by definition of yr and ya
(2) We prove the two inclusions and the polarity condition:

• Let a ∈ ya. Among (a, r) or (a, a), one of them is positive. Since both belong toy0 ⊑ lblS (x0),
then we have at least (a, r) ∈ lblS (x0). This implies that a ∈ lblS (πx0) as desired.
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• Let lblS s ∈ lblS x . We have (s, r) ∈ x0. If s is negative, then from y0 ⊑ lblS (x0), we conclude
that (lblS s, r) ∈ y0 hence lblS (s) ∈ yr. If s is positive, then either (s, a) ∈ x0, which since

it is negative implies lblS (s) ∈ ya ⊆ yr as desired; or (s, a) ∈ x0 meaning that (s, r) is
maximal in x0 (because s is positive). Since x0 is fully propagated with y0, it follows that
(lblS (s), r) ∈ y0 which implies the desired conclusion.

• Let a ∈ yr \ lblS (x). Then (a, r) ∈ yr \ lblS x0 hence it must be negative.

(3) Consider s− ∈ max(x) such that lblS (s) < ya. Since (s, r) is negative, it cannot be maximal. If

(s, a) ∈ x0, then it will be maximal but its image will not be in y0: absurd. Then (s, a) < x0 but
(s, r) is not maximal. This means that s must be coincident to s ′ and (s, r) < (s ′, r) ∈ x0. In
particular s ′ is not separated.

(4) Consider s+ ∈ x not maximal. This means that s < s ′ so that (s, a) < (s ′, r) in S . We get that

(s, a) ∈ x0 is negative, hence must belong to y0 which implies s ∈ ya.
(5) Consider a coincidence {s+, s ′−} such that lblS (s ′) ∈ ya. As a result (s, a) < (s ′, a) ∈ x . Since

(s, a) is negative, we get that (lblS (s), a) ∈ ya.
□

Given x a lifted configuration, we define the internal acknowledgements, and its internal state
as follows:

a(x) = xv \max(x) ∪ {s ∈ max(x) ∩ S−1(ya) | s positive⇒ s ≡ s ′ ∧ lblS (s ′) ∈ ya}
st(x) = x∗ × {∗} ∪ xv × {r} ∪ a(x) × {a}.

We have:

LemmaD.5. st(x) is a configuration of S and is fully propagated for lblS (x). Moreover, χ (st(x), lblS (x)) =
x.

Proof. It is a configuration of S . We have π (st(x)) = x ∈ ConS hence by definition st(x) is
consistent in S . We show downclosure, consider the possible cases for e ≺ e ′ ∈ x :

• e = (s, r) ≺ e ′ = (s, a): trivial since a(x) ⊆ x
• e = (s, a) ≺ e ′ = (s ′, r): we know that s < s ′ and {s, s ′} is not a coincidence. As a result

s ∈ xv \max(x) ⊆ a(x).
• e = (s, r) ≺ e ′ = (s ′, r) when {s−, s ′+} is a coincidence: trivial since s ∈ x .
• e = (s ′, a) ≺ e ′ = (s, a) when {s−, s ′+} is a coincidence: we know that s ∈ a(x). If s is not
maximal in x , neither is s ′ and we can conclude. Otherwise, we know that lblS (s) ∈ ya hence
via axiom (5), lblS (s ′) ∈ ya as well, which shows that a ∈ a(x) as desired.

• e = (s, a) ≺ e ′ = (s ′, ∗): since s < s ′, we have that s is not maximal in x .
• e = (s, ∗) ≺ e ′ = (s ′, r): trivial since s < s ′ hence s ∈ x∗.
• e = (s, ∗) ≺ e ′ = (s ′, ∗) trivial since s < s ′ in x∗.

Full-propagation. Now we show that lblS (x) ⊑ lblS (st(x)):
• If (a+, r) ∈ lblS (x): then a ∈ yr ⊇− lblS (x) by (2), hence a ∈ lblS (x) which implies (a, r) ∈
S(st(x)).

• If (a−, a) ∈ lblS (x): then since ya ⊆ lblS (x) by (2), we have that a = lblS (s) with negative s ∈ x .
It is easy to see that s ∈ a(x), so (s, a) ∈ st(x).

• If (S s−, r) ∈ lblS (st(x)), then s ∈ x hence lblS (s) ∈ yr by (2) and we can conclude.

• If (S s+, a) ∈ lblS (st(x)), then s ∈ a(x). If s is maximal in x , we are done by definition of a(x).
If it is not maximal, we conclude by axiom (4).

Consider e ∈ max(st(x)) which is visible. There are two cases:
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• e = (s, r): then s is maximal and visible. First, if s is negative, we know that s < a(x), hence
s < S−1(ya). This contradicts axiom (3). As a result, s must be positive. Since lblS (s) ∈ yr, we
get that S e ∈ y0.

• e = (s, a): by definition s ∈ lbl−1S (ya). We need to show that s is negative (so that e is positive).
We know that s is not a separated positive event. If it were a positive event coincident with

negative s ′ ∈ x , then we know that lblS (s ′) ∈ ya by definition of a(x).
χ (st(x), S(x)) = x. It is easy to see that they agree on components ya and yr. Write x† for the x

component of χ (st(x), S(x)). We have, by definition

x† = {s | (s, r) ∈ st(x) ∨ (s, ∗) ∈ st(x)}
= xv ∪ x∗ = x

□

We can now conclude:

Proposition D.6. Lifted configurations of S are order-isomorphic to configurations of ↑S .

Proof. Via Lemma D.2, χ defines an injective monotonic map fromC (↑S) to lifted configurations
of S . Lemma D.5 shows it is surjective. We conclude since χ trivally preserves and reflects inclusion.

□

D.3 Injectivity and functoriality
Injectivity of the encoding. We start by showing that the configurations of S can be recovered

inside ↑S by looking at complete configurations.

Lemma D.7. Let x = (x ,yr,ya) be a lifted configuration of S . The configuration lblS (x) is complete
if and only if ya = yr = lblS (x).

Proof. Assume that lblS (x) is complete. Clearly ya = yr. Since ya ⊆ lblS x ⊆ yr, it follows that
ya = x as desired.

The converse implication is clear. □

As a result the map φS : C (S) → Cc (↑S) mapping a configuration x ∈ C (S) to the configuration

of ↑S corresponding to the lifted configuration (x , lblS (x), lblS (x)) is an order-isomorphism. From

this, the injectivity of S 7→ ↑S follows:

Lemma D.8. For S,R two coincident strategies on A, if ↑S � ↑R, then S � R.

Proof. Clearly if S � T then ↑S � ↑T . Conversely, from ↑S � ↑T , we deduce easily that

Cc (↑S) � Cc (↑T ), hence:
C (S) � Cc (↑S) � Cc (↑T ) � C (T ).

□

Preservation of copycat. We now establish that the encoding sends the synchronous copycat to

the asynchronous copycat. Given yr,ya ∈ C (A) we write yr ⊎ ya for yr × {r} ∪ ya × {a} ⊆ ↑A.

Lemma D.9. If (x ∥ x ,yr ∥ y ′r,ya ∥ y ′a) is a lifted configuration of CCCA. We have:

yr ⊑A y
′
r y ′a ⊑ ya.

Moreover x = yr ∩ y ′r.

Proof. We start with the Scott inclusions.
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• (yr ⊑A y ′r) Consider a
+ ∈ yr. Then, we know a ∈ x ⊆ y ′r by (2). The other inclusion is

symmetric.

• (y ′a ⊑ ya) If a
+ ∈ y ′a, then a ∈ x . If a < max(x), then a ∈ y ′a by (4). Otherwise, if a ∈ max(x),

then we know that (0,a) ≡ (1,a) in CCCA, and since a is positive, a ∈ y ′a ⇒ a ∈ ya which
allows us to conclude by assumption.

By applying (2), we get that x ∥ x ⊆− yr ∥ y ′r. This implies that x ⊆ yr ∩ y ′r. Moreover, if

a ∈ yr ∩ y ′r, then one of (0,a) or (1,a) is positive in A⊥ ∥ A, hence a ∈ x . □

Lemma D.10. Let A be game. We have ↑CCCA � CC↑A.

Proof. The previous lemma tells us that the mapping:

ψ : C (↑CCCA) −−→ C (CC↓A)
χ (_,yr ∥ y ′r,ya ∥ y ′a) 7→ (yr ⊎ ya) ∥ (y ′r ⊎ y ′a)

is an order-isomorphism, which allows us to conclude by Lemma B.2. □

D.4 Preservation of composition.
We now show that our encoding preserves composition. Consider S : A⊥ ∥ B and T : B⊥ ∥ C . We

show that ↑(T ⊚ S) � ↑T ⊚ ↑S .

D.4.1 From ↑T ⊚ ↑S to ↑(T ⊚ S). Consider w ∈ C (↑T ⊛ ↑S). Consider the lifted configurations

(wS ,y
A
r ∥ yBr ,yAa ∥ yBa ) and (wT ,y

B
r ∥ yCr ,yBa ∥ yCa ) associated to ΠS w and ΠT w .

Lemma D.11. We have lblS (wS ) ∩ B = T wT ∩ B.

Proof. Let lblS (s) ∈ lblS (wS ) ∩ B. If s is negative, then since T xT ⊆− yBr ∥ yCr and lblS (s) is
positive and in yBr , then it is lblT (xT ) as desired.

Otherwise, assume it is positive. If it is not maximal, then lblS (xS ) ∈ yBa ⊆ TxT ∩ B as desired. If

it is maximal, the element e ∈ [w] such that ΠSe = (s, r). Note that ΠT (e) = (t , r) with negative

t ∈ yBr . Then this event cannot be maximal in [w] as it is not visible, hence there must exist e < e ′

with ΠT (e ′) = (t ′+, r). Since t ′ is positive and in yBr , then t ′ ∈ wT and so is t as desired. □

As a result, we get a synchronized configuration

φw : wS ∥ (wT )∗ ∥ T (wT ) ∩C ≃ S(wS ) ∩A ∥ (wS )∗ ∥ wT .

Lemma D.12. Assume thatw−⊂w ′. Then φw−⊂ . . .−⊂φw ′ and each step is in Cφw′ .

Proof. Assume thatw
e−−⊂w ′

. We proceed by case distinction:

(1) If e is neutral for, say, ↑S , that is Π↑S (e) = (s, ∗). Then φw
(0,s),(1,s)
−−⊂ , and the step is indeed valid.

Similar for an event in T .
(2) If e is a negative visible event, thenwS = w

′
S andw ′

T = wT hence φw = φw ′ .

(3) If e is an acknowledgement, then φw = φw ′ .

(4) If e is a request sent on B then φw = φw ′

(5) If e is a positive visible request, say onA, then we can look in ↑T ⊛↑S which requests are below
e but whose acknowledgements are above that of e . This gives a set of events X such that

φw
X−−⊂φw ′ where X ∈ Cφw′ . Acyclicity comes from the total order in the pullback between

the coincident requests. □

As a result φw ∈ C (T ⊛ S).
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Lemma D.13. If the maximal elements ofw are essential, then so are those of φw .

Proof. Consider a maximal element of φw . We show it cannot be mapped to B: assume it

corresponds to a pair (s, t). Then s is maximal in xS and t ∈ xT . Then (lblS (s), r) and (lblS (s), a)
cannot be maximal inw by assumption, so there must must be an event inw above them, which

is not negative visible by courtesy. This event would appear in φw as well, which contradicts the

assumption. □

Lemma D.14. If the maximal elements of w are essential, then (φw ,yAr ∥ yCr ,yAa ∥ yCa ) is a lifted
configuration of T ⊚ S .

Proof. Mostly routine verification using the fact that (wS ,y
A
r ∥ yBr ,yAa ∥ yBa ) and (wT ,y

B
r ∥

yCr ,y
B
a ∥ yCa ) are lifted configurations. □

Hence we have a monotonic map ↑T ⊚ ↑S to ↑(T ⊚ S).

D.4.2 From ↑(T ⊚ S) to ↑T ⊚ ↑S . Consider z ∈ C (↑(T ⊚ S)), and write

(T ⊚ S)z = (yAr ⊎ yAa ) ∥ (yCr ⊎ yCa ).
Moreover, remember that π z ∈ C (T ⊚S). Define zS = ΠS ([π z]) ∈ C (S) and zT = ΠT ([π z]) ∈ C (T ).
We also define

yBr := lblS (zS ) ∩ B = T zT ∩ B.

Write zB = {e ∈ [z] | lblS (ΠS e) ∈ B} and µ : zB → B to be the composite S ◦ ΠS . We then

reconstruct the acknowledgements on B:

yBa := {µ e | e ∈ zB ∧ e is separated} ∪ {µ e | e ∈ zB ∧ e ∈ [z)}
{µ e | e ∈ zB ∧ ∃e ′− ∈ zv , e

′ ≡ e ∧ (T ⊛ S)e ∈ yAa ∥ yCa }

Lemma D.15. The tuples (zS ,yAr ∥ yBr ,yAa ∥ yBa ) and (zT ,yBr ∥ yCr ,yBa ∥ yCa ) are lifted configurations
of S and T respectively.

Proof. The two statements are symmetric; we only show the case for S .

(1) Because µ is a map of event structures, both yBr and yBa are configurations of B. Moreover,

yBa ⊆ yBr hence yr ⊎ ya ∈ C (↑B).
(2) It is easy to see that yAa ∥ yBa ⊆ lblS (zS ). Consider b+ ∈ yAr ∥ yBr . If b ∈ yAr , then we have

b ∈ (T ⊚ S)z ∩A = SzS ∩A as desired. If b+ ∈ yAr , then b ∈ SzS by definition.

(3) Let s− ∈ max(zS ) and lblS (s) < yAa ∥ yBr . If lblS (s) ∈ A, then we just apply the fact that

(z,yAr ∥ yCr ,yAa ∥ yCa ) is a lifted configuration. If lblS (s) ∈ B, we know that if s was separated,
the lblS (s) ∈ yBr , absurd.

(4) If s+ ∈ [zS ), then s = ΠS e with e ∈ [z]. Moreover, since s is not maximal in zS , then e is not
maximal in [z], hence we can conclude by case distinction on whether lblS (s) is in A or B.

(5) Consider s+ ≡zS s ′− and consider lblS (s ′) ∈ yAa ∥ yBa . If both belong to A, we can conclude

because (z,yAr ∥ yCr ,yAa ∥ yCa ) is a lifted configuration. If s ′ is in A and s in B, we can also

conclude by the definition of yBa . If both are in B, then we know that s = ΠS e and s
′ = ΠS e

′

with e, e ′ ∈ [z]. Since both are events mapped to B they cannot be visible, hence cannot be

maximal in [z], and lblS (s) = µ e and lblS (s ′) = µ e ′ are both in yBr as required.

□

Write xS ∈ C (↑S) and xT ∈ C (↑T ) for the corresponding configurations. We know that SxS ∩B =
yBr ⊎ yBa = TxT ∩ B. Hence, there exists a synchronized configuration φz ∈ C (↑T ◦ ↑S). We need to

show it is reachable.
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Lemma D.16. The synchronized configuration φz is reachable and its maximal events are visible.

Proof. Reachability. Assume that there is a cycle in φz , wlog we can assume it is in B, eg.

(e1,α1) < . . . < (en ,αn) < (e1,α1).
where αi ∈ {r, a} and ei ∈ π z. Since we can project these events to T ⊛ S in a monotonic way, we

get that {e1, . . . , en} is a coincidence X of π z. Since (ei ,αi ) < (ei+1,αi+1), it must be that ei and
ei+1 are related in the graph (X ,ΠS ,ΠT ). As a result, the cycle in φz induces a cycle in (X ,ΠS ,ΠT )
which is absurd since π1 z ∈ C (T ⊚ S).

Maximal events. The maximal events of φz cannot be projected to an element of B, as otherwise
there would be a maximal element of z projected to an element of ↑B. □

Hence φz ∈ C (↑T ⊚ ↑S). This defines a monotonic map ↑(T ⊚ S) to ↑T ⊚ ↑S which is the inverse

to the previous map.

We can then conclude:

Theorem 7.5. The operation ↑ defines a faithful functor CGS → CGA, i.e.,

(1) ↑CCCA � CC↑A (2) ↑(R ⊚ S) � ↑R ⊚ ↑S (3) ↑R � ↑S ⇒ S � R

D.5 Well-acknowledging strategies
Lemma 7.8. For any σ : S ⇀ A, the strategy ↑σ is well-acknowledging.

Proof. (1) First, since copycat is deterministic, X ∈ Con↑S if and only if ΠSX ∈ C (S). We

then conclude since consistency in S does not depend on the presence of acknowledgements.

(2-3) Consequence of Lemma 7.6.

(4) If s is a positive request, it must be acknowledged by receptivity. Otherwise, because copycat

is a tree and s is not maximal, there exists s _ s ′ in the interaction CC↑S ⊛S with ΠSs
′
defined.

Hence it is acknowledged in S , and copycat will eventually forward this acknowledgement.

□

Construction of the inverse.

Lemma D.17. Let S : S ⇀ ↑A be well-acknowledging. For x ∈ C (S) and s ∈ x , if s has two distinct
acknowledgements s1 and s2 compatible with x , then s is maximal in x and negative.

Proof. Clearly, s cannot be positive: positive requests have a unique acknowledgement by

receptivity. Assume that negative s has a successor s ′ ∈ x . If lblS (s) _ lblS (s ′), then s ′ is an
acknowledgement of s , and since it is in x it must be the only one by local receptivity: absurd.

Hence s ′ must be positive. Write s ′
1
≤ s1 and s

′
2
≤ s2 for two events compatible with x in minimal

conflict. Because acknowledgements are not involved in minimal conflict, and non maximal requests

must be acknowledged, we must have s ′
1
, s ′

2
∈ ↓S . Moreover, s ′

1
≺ s and s ≺ s ′. Hence s ′

1
≺ s ′ by

transitivity. Since s ′ is positive, this implies that s ′
1
≤ s ′ and s ′

1
∈ x . Similarly s ′

2
∈ x which is absurd

since s ′
1
and s ′

2
are not compatible. □

Lemma D.18. Let S : S ⇀ ↑A be well-acknowledging. If s ∈ S is not negative maximal, then it is
acknowledged.

Proof. If s is positive, then receptivity forces it to be acknowledged. If s is negative not maximal,

consider s _ s ′ with s ′ ∈ S . By courtesy, either lblS (s) _ lblS (s ′) and s ′ is an acknowledgement of s ;

or s ′ is positive. Then, since s ′ is positive, in the interaction CC↑A⊛S , we must have s _ e _ e ′ _ s ′

with ΠS (e) defined and projects to the same event as s . In S , all events are acknowledged, so e has
an acknowledgement, which will eventually be forwarded by copycat. □
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Lemma D.19. Let S : S ⇀ ↑A be well-acknowledging. For x ∈ C (↓S) without maximal negative
requests, there exists an extension x ⊆ x ′ by only acknowledgements such that all requests of x are
acknowledged in x ′.

Proof. This amounts to showing that if s ∈ x , then there exists an acknowledgement s ′ ∈ S
such that x ∪ [s ′] is a configuration. Once again, the difficulty is for negative requests. □

Proposition 7.9. If S is well-acknowledging, then ↓S is a coincident strategy. Moreover ↑↓S � S .

Proof. That ↓S is a coincident strategy is a simple observation.

To show that ↑T � S , we show that lifted configurations are order-isomorphic to configurations

of S .
From S . Consider z ∈ C (S). First, define yzr and yza the unique configurations of A such that

lblS (z) = yzr ⊎yza . Then, define xz := [z+] ∩↓S . Note that xz contains all the requests of z by Lemma

D.18. By Lemma 7.6, it is downclosed.

We show that (xz ,yzr ,yza) is a lifted configuration of ↓S .
(1) By definition

(2) Clearly yza ⊆ ↓S(xz ) ⊆ yzr . Moreover, if a+ ∈ yzr , then a = lblS (s) with s ∈ z. Since s is a
positive request, it is in T hence s ∈ xz as desired.

(3) Consider s− ∈ max(xz ) such that lblS (s) < yza . Since lblS (s) < yza , s is not acknowledged in z,
hence s is maximal in [z+]. As a result, s must be coincident to a positive event.

(4) Consider s+ ∈ [xz ). We have s ⪯ s ′ in xz . By receptivity, s has a unique acknowledgement s0.
If s ′ is neutral, then we must have s0 ≤ s ′ and s0 ∈ z which entails lblS (s) ∈ yza . Otherwise,
writing s ′

1
for an acknowledgement of s ′, we have s ≤ s ′

1
which must imply s ′

0
≤ s ′

1
. Since the

maximal events of xz are positive, we can assume that s ′ is positive. Then courtesy implies

that s ′
0
≤ s ′ as desired.

(5) Consider s+ ≡ s ′− a coincidence of xz such that lblS (s ′) ∈ yza . By assumption s ⪯ s ′, hence
s must be below the acknowledgement of s ′ in z. By courtesy, this implies that the unique

acknowledgement of s must also be below it, which by downclosure of z implies that it is

present in z as desired.

To S . Consider now a lifted configuration x = (x ,yr,ya) of ↓S . First, we extend [x]S by receptivity

such that ↓lblS (x ′) = yr, and then by receptivity to include all the negative events in ya. This gives
a configuration z ∈ C (S), in which only negative requests are not acknowledged. Then, for any

s ∈ max(x), there exists a unique acknowledgement s ′ of s compatible with x . Moreover, assume

that s0 _ s ′. If s0 is neutral or a request, then s0 ≺ s , hence since x is downclosed, s0 ∈ x ⊆ z.
If s0 is an acknowledgement, it must be negative, and the corresponding request is coincident to

s . As a result z extends, only by acknowledgements to z ′ where all the requests in ya must be

acknowledged. Moreover, all acknowledged requests are easily shown to be in ya as result, we have

lblS (z ′) = yr ⊎ ya.

as desired.

By receptivity, these constructions are inverse to each other, hence the desired isomorphism. □

D.6 Encoding and behavioural equivalences
Given a coincident strategy S : A, remember the order-isomorphism

φS : C (S) � Cc (S)
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Lemma D.20. Let S : A be a coincident strategy and x ∈ C (S). If φS (x) extends by neutral events to
z then z = φS (x ′) for some x ⊆ x ′.

Proof. Sinceφσ (x) is complete, z is also complete. Hence x ′ = φ−1σ (z) is the desired configuration.
□

Lemma 7.11. For S,R : A, if ↑S ≈ ↑R then S ≈ R.

Proof. Consider a weak bisimulation R : ↑S ≈ ↑R. Define

↓ R = {(x ,y) ∈ C (S) × C (R) | φ(x)Rφ(y)}.

We show it is a weak bisimulation.

Assume x ↓ Ry and consider x
X−−⊂ x ′

. There are several cases:

• IfX = {s} with s neutral: then φ(x)−⊂φ(x ′) (neutral extension). Applying the assumption, we

get that:φ(y) ⊆ z where the extension only contains neutral events, and we haveφ(x∪{s})Rz.
Since z extends φ(y) by neutral events, y extends to y ′ with φ(y ′) = z by Lemma D.20. By

construction we have x ′ ↓ Ry ′.
• If X = {s} with s visible: then φ(x) e−−⊂ e−−⊂

′
φ(x ′) where lbl↑S (e) = (lblS (s), r), lbl↑S (e ′) =

(lblS (s), a). Applying the assumption, we get that φ(y) extends to z such that the visible

events of z \ φ(y) are the request and acknowledgement of lblS (s). Then z by construction is

complete, hence is φ(y ′) and we can conclude.

• If X = {s−
1
, s+

2
}: write a = lblS (s1) and b = lblS (s2). In ↑S , we have by construction:

φ(x)
e1−−⊂ ⊆

e2−−⊂
e ′
1−−⊂ ⊆

e ′
2−−⊂ z

where

lbl↑S (e1) = (a, r) lbl↑S e2 = (b, r) lbl↑S (e ′1) = (b, a) lbl↑S (e ′2)
and the inclusions only contain neutral events. As before, we apply the assumption to get that

φ(y) extensd to z. Since z is complete (we added two requests and their acknowledgements),

z = φ(y ′). Moreover, by construction, τ (y ′ \ y) = {a,b}. Hence we can conclude.

□

E COUNTEREXAMPLES
E.1 Non adequacy of the encoding of session π into internal session π
Example E.1. Remember the two processes

P = a!go⟨b⟩ and Q = (νc)(a!go⟨c⟩. c?ack.b!ack) typeable on ∆ = b : !ack,a : !go⟨!ack⟩

Consider now the context

C[] = (νab)([] | a?go(x). (x !ack.b?ack. cf ! + (b?ack | x !ack). cs !)

where we use the notation (α | β). P for (νd)(α .d?(). P | β .d!()). We have that C[P] and C[Q] are
well-typed processes on the context cs : !succ, cf : !fail.

The process C[Q] has a weak barb on cf but not C[P], hence they cannot be barbed congruent:

C[Q] → (νabc)(c?ack.b!ack | (c!ack.b?ack. cf ! + (b?ack | c!ack). cs !)
→ cf !
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E.2 Non full abstraction of the encoding
Example E.2. Consider the game A comprising three concurrent moves a b c , along with the two

strategies S and R on A:

∗ a ∗

c b c b

∗ ∗

c a a b

b c

This two strategies are weakly bisimilar. They are, however not history-preserving weakly bisimilar:

there is no weak bisimulation R satisfying xRy implies xv � yv . Indeed, the left strategy can do an

action a without comitting on the causal history, while the right one cannot. If we compute their

encoding, we get:

∗ (a, r) ∗

(c, r) (b, r) (a, a) (c, r) (b, r)

(c, a) (b, a) (c, a) (b, a)

∗ ∗

(c, r) (a, r) (a, r) (b, r)

(c, a) (a, a) (a, a) (b, a)

(b, r) (c, r)

(b, a) (c, a)

However, these two strategies are not bisimilar. The left one can do (a, r) and still keep the possibility
of performing (b, r) and (c, r) while the righthand strategy must commit before issuing (a, r).
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